Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T10:57:23.795Z Has data issue: false hasContentIssue false

Mechanical production of metamorphic banding—a critical appraisal

Published online by Cambridge University Press:  01 May 2009

D. Shelley
Affiliation:
Department of GeologyUniversity of CanterburyChirstchurchNew Zealand

Summary

The mechanical process for producing foliation (banding) in metamorphic rocks, as proposed by Schmidt (1932), is shown to be inadequate. Examples in the literature ascribed to the mechanism are insufficiently supported and the metallurgical analogy for the process is found to be false. A possible restatement of a mechanical process by analogy with particle interaction effects during the laminar flow of suspensions is discussed. Evidence from metamorphic rocks indicates, however, that the modified mechanical process cannot be responsible for common metamorphic layering.

Type
Articles
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagnold, R. A. 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A 225, 4963.Google Scholar
Bastien, P. G. 1957. The mechanism of formation of banded structures. J. Iron Steel Inst. 187, 281–91.Google Scholar
Benedicks, C. & Löfquist, H. 1929. Slagginneslutningar i järn och stål. Stockholm.Google Scholar
Boulton, G. S. 1967. The development of a complex supraglacial moraine at the margin of Sørbreen, Ny Friesland, Vestspitsbergen. J. Glaciology. 6, 717–35.CrossRefGoogle Scholar
Burch, S. H. 1968. Tectonic emplacement of the Burro Mountain Ultramafic Body, Santa Lucia Range, California. Bull. geol. Soc. Am. 79, 527–44.CrossRefGoogle Scholar
Carter, N. L. & Ave'Lallemant, H. G. 1970. High-temperature flow of dunite and peridotite. Bull. geol. Soc. Am. 81, 2181–202.CrossRefGoogle Scholar
Goldsmith, H. L. & Mason, S. G. 1962. The flow of suspensions through tubes. I. Single spheres, rods and discs. J. Colloid Sci. 17, 448–76.CrossRefGoogle Scholar
Hellner, L. & Norrman, T. O. 1968. Banding in alloyed steels. Jernkont. Ann. 152, 269–86.Google Scholar
Komar, P. D. 1972(a). Mechanical interactions of phenocrysts and flow differentiation of igneous dykes and sills. Bull. geol. Soc. Am. 83, 973–88.CrossRefGoogle Scholar
Komar, P. D. 1972(b). Flow differentiation in igneous dykes and sills: profiles of velocity and phenocryst concentration. Bull. geol. Soc. Am. 83, 3443–8.CrossRefGoogle Scholar
Means, W. D. & Williams, P. F. 1972. Crenulation cleavage and faulting in an artificial salt-mica schist. J. Geol. 80, 569–91.CrossRefGoogle Scholar
Prinz, M. & Poldervaart, A. 1964. Layered mylonite from Beartooth Mountains, Montana. Bull. geol. Soc. Am. 75, 741–4.CrossRefGoogle Scholar
Radford, K. C. & Newey, C. W. A. 1967. Plastic deformation in magnesium aluminate spinel. Proc. Br. Ceram. Soc. 9, 131–45.Google Scholar
Schmidt, W. 1932. Tektonik und Verformungslehre. Borntraeger, Berlin.CrossRefGoogle Scholar
Sclar, C. B. 1958. The Preston Gabbro and associated metamorphic gneisses. Bull. Conn. St. geol. nat. Hist. Surv. 88, 1131.Google Scholar
Sclar, C. B. 1965. Layered mylonites and the processes of metamorphic differentiation. Bull. geol. Soc. Am. 76, 611–12.CrossRefGoogle Scholar
Smith, T. B., Thomas, J. S. & Goodall, R. 1963. Banding in a 1½ % nickel—chromium— molybdenum steel. J. Iron Steel Inst. 201, 602–9.Google Scholar
Spry, A. 1969. Metamorphic Textures. Pergamon, Oxford.Google Scholar
Turner, F. J. & Verhoogen, J. 1960. Igneous and Metamorphic Petrology. McGraw-Hill, New York.Google Scholar
Weertman, J. 1968. Diffusion Law for the dispersion of hard particles in an ice matrix that undergoes simple shear deformation. J. Glaciol. 7, 161–5.CrossRefGoogle Scholar