Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T18:12:00.275Z Has data issue: false hasContentIssue false

Emplacement age and isotopic composition of the Prairie Lake carbonatite complex, Northwestern Ontario, Canada

Published online by Cambridge University Press:  12 February 2016

FU-YUAN WU*
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
ROGER H. MITCHELL
Affiliation:
Department of Geology, Lakehead University, Ontario, P7B 5E1, Canada
QIU-LI LI
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
CHANG ZHANG
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
YUE-HENG YANG
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
*
Author for correspondence: [email protected]

Abstract

Alkaline rock and carbonatite complexes, including the Prairie Lake complex (NW Ontario), are widely distributed in the Canadian region of the Midcontinent Rift in North America. It has been suggested that these complexes were emplaced during the main stage of rifting magmatism and are related to a mantle plume. The Prairie Lake complex is composed of carbonatite, ijolite and potassic nepheline syenite. Two samples of baddeleyite from the carbonatite yield U–Pb ages of 1157.2±2.3 and 1158.2±3.8 Ma, identical to the age of 1163.6±3.6 Ma obtained for baddeleyite from the ijolite. Apatite from the carbonatite yields the same U–Pb age of ~1160 Ma using TIMS, SIMS and laser ablation techniques. These ages indicate that the various rocks within the complex were synchronously emplaced at about 1160 Ma. The carbonatite, ijolite and syenite have identical Sr, Nd and Hf isotopic compositions with a 87Sr/86Sr ratio of ~0.70254, and positive εNd(t)1160 and εHf(t)1160 values of ~+3.5 and ~+4.6, respectively, indicating that the silicate and carbonatitic rocks are co-genetic and related by simple fractional crystallization from a magma derived from a weakly depleted mantle. These age determinations extend the period of magmatism in the Midcontinent Rift in the Lake Superior area to 1160 Ma, but do not indicate whether the magmatism is associated with passive continental rifting or the initial stages of plume-induced rifting.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, K. 1998. Radiogenic isotope constraints on relationships between carbonatites and associated silicate rocks – a brief review. Journal of Petrology 39, 1987–96.CrossRefGoogle Scholar
Bell, K. & Blenkinsop, J. 1980. Ages and initial 87Sr/86Sr ratios from alkalic complexes of Ontario. In Geoscience Research Grant Program, Summary of Research 1979–1980 (ed. Pye, E. G.), pp. 1623. Ontario Geological Survey Miscellaneous Paper 93.Google Scholar
Bell, K. & Blenkinsop, J. 1987. Archean depleted mantle: evidence from Nd and Sr initial isotopic ratios of carbonatites. Geochimica et Cosmochimica Acta 51, 291–8.CrossRefGoogle Scholar
Bell, K. & Blenkinsop, J. 1989. Neodymium and strontium isotope geochemistry of carbonatites. In Carbonatites: Genesis and Evolution (ed. Bell, K.), pp. 278300. London: Unwin Hyman.Google Scholar
Bell, K., Blenkinsop, J., Cole, T. J. S. & Menagh, D. P. 1982. Evidence from Sr isotopes for long-lived heterogeneities in the upper mantle. Nature 298, 251–3.CrossRefGoogle Scholar
Bell, K. & Simonetti, A. 2010. Source of parental melts to carbonatites – critical isotopic constraints. Mineralogy and Petrology 98, 7789.CrossRefGoogle Scholar
Bottriell, K. J. 1975. Rubidium–strontium isochron age studies of Nemegosenda and Prairie Lake. B. Sc. thesis, Carleton University, Ottawa, Canada, 44 pp. Published thesis.Google Scholar
Bright, R. M., Amato, J. M., Denyszyn, S. W. & Ernst, R. E. 2014. U–Pb geochronology of 1.1 Ga diabase in the southwestern United States: testing models for the origin of a post-Grenville large igneous province. Lithosphere 6, 135–56.CrossRefGoogle Scholar
Brooker, R. A. & Kjarsgaard, B. A. 2011. Silicate-carbonate liquid immiscibility and phase relations in the system SiO2–Na2O–Al2O3–CaO–CO2 at 0.1–2.5 GPa with applications to carbonatite genesis. Journal of Petrology 52, 1281–305.CrossRefGoogle Scholar
Burke, K. & Dewey, K. L. 1973. Plume generated triple junctions: key indicators in applying plate tectonics to old rocks. Journal of Geology 81, 406–33.CrossRefGoogle Scholar
Cannon, W. F. 1992. The North American Midcontinent Rift beneath the Lake Superior region with emphasis on its geodynamic evolution. Tectonophysics 213, 41–8.CrossRefGoogle Scholar
Ernst, R. E. & Bell, K. 2010. Large igneous provinces (LIPs) and carbonatites. Mineralogy and Petrology 98, 5576.CrossRefGoogle Scholar
Ernst, R. & Bleeker, W. 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the present. Canadian Journal of Earth Sciences 47, 695739.CrossRefGoogle Scholar
Ernst, R. E. & Buchan, K. L. 1997. Giant radiating dyke swarms: their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. & Coffin, M.), pp. 297333. American Geophysical Union, Geophysical Monograph vol. 100. Washington, DC, USA.Google Scholar
Fisher, C. M., Vervoort, J. D. & Dufrane, S. A. 2014. Accurate Hf isotope determinations of complex zircons using the “laser ablation split stream” method. Geochemistry, Geophysics, Geosystems 15, 121–39.CrossRefGoogle Scholar
Gittins, J. & Harmer, R. E. 2003. Myth and reality in the carbonatite – silicate rock “association”. Periodico di Mineralogia 72, 1926.Google Scholar
Gittins, J., Macintyre, R. M. & York, D. 1967. The ages of carbonatite complexes in eastern Canada. Canadian Journal of Earth Sciences 4, 651–5.CrossRefGoogle Scholar
Griffin, W. L., Powell, W. J., Pearson, N. J. & O'Reilly, S. Y. 2008. GLITTER: data reduction software for laser ablation ICP–MS. In Laser Ablation-ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues (ed. Sylvester, P.), pp. 308–11. Mineralogical Association Canada Short Course no. 40.Google Scholar
Harmer, R. E. 1999. The petrogenetic association of carbonatite and alkaline magmatism: constraints from the Spitskop Complex, South Africa. Journal of Petrology 40, 525–48.CrossRefGoogle Scholar
Harmer, R. E. & Gittins, J. 1998. The case for primary, mantle-derived carbonatite magma. Journal of Petrology 39, 1895–903.CrossRefGoogle Scholar
Heaman, L. M. 2009. The application of U–Pb geochronology of mafic, ultramafic and alkaline rocks: an evaluation of three mineral standards. Chemical Geology 261, 4251.CrossRefGoogle Scholar
Heaman, L. M., Easton, R. M., Hart, T. R., Hollings, P., Macdonald, C. A. & Smyk, M. 2007. Further refinement to the timing of Mesoproterozoic magmatism, Lake Nipigon region, Ontario. Canadian Journal of Earth Sciences 44, 1055–86.CrossRefGoogle Scholar
Heaman, L. M. & Machado, N. 1992. Timing and origin of Midcontinent Rift alkaline magmatism, North America: evidence from the Coldwell Complex. Contributions to Mineralogy and Petrology 110, 289303.CrossRefGoogle Scholar
Hollings, P., Richardson, A., Creaser, R. & Franklin, J. 2007. Radiogenic isotope characteristics of the Midproterozoic intrusive rocks of the Nipigon Embayment, Northwestern Ontario. Canadian Journal of Earth Sciences 44, 1111–29.CrossRefGoogle Scholar
Hollings, P., Smyk, M. & Cousens, B. 2012. The radiogenic isotope characteristics of dikes and sills associated with the Mesoproterozoic Midcontinent Rift near Thunder Bay, Ontario, Canada. Precambrian Research 214/215, 269–79.CrossRefGoogle Scholar
Jones, J. H., Walker, D., Picket, D. A., Murrel, M. T. & Beate, P. 1995. Experimental investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa and U between immiscible carbonate and silicate liquids, Geochimica et Cosmochimica Acta 59, 1307–20.CrossRefGoogle Scholar
Kemp, A. I. S., Foster, G. L., Schersten, A., Whitehouse, M. J., Darling, J. & Storey, C. 2009. Concurrent Pb–Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas. Chemical Geology 261, 244–60.CrossRefGoogle Scholar
Kimura, J. I., Tani, K. & Chang, Q. 2012. Determination of Hf isotope ratios in zircon using multiple collector-inductively coupled plasma mass spectrometry equipped with laser ablation and desolvating nebulizer dual sample introduction system. Geochemical Journal 46, 112.CrossRefGoogle Scholar
Kjarsgaard, B. A. 1998. Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa. Journal of Petrology 39, 2061–75.CrossRefGoogle Scholar
Krasnova, N. I., Petrov, T. G., Balaganskaya, E. G., Garcia, D., Moutte, J., Zaitsev, A. N. & Wall, F. 2004. Introduction to phoscorites: occurrence, composition, nomenclature and petrogenesis. In Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province (eds Wall, F. & Zaitsev, A. N.), pp. 4372. Mineralogical Society Series no. 10.Google Scholar
Kwon, S. T., Tilton, G. R. & Grüenenfelder, M. H. 1989. Lead isotope relationships in carbonatites and alkalic complexes: an overview. In Carbonatites: Genesis and Evolution (ed. Bell, K.), pp. 360–87. London: Unwin Hyman.Google Scholar
Lee, W. J. & Wyllie, P. J. 1998. Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems. Journal of Petrology 39, 2005–13.CrossRefGoogle Scholar
Li, Q. L., Li, X. H., Liu, Y., Tang, G. Q., Yang, J. H. & Zhu, W. G. 2010. Precise U–Pb and Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. Journal of Analytical Atomic Spectrometry 25, 1107–13.CrossRefGoogle Scholar
Li, Q. L., Li, X. H., Wu, F. Y., Yin, Q. Z., Ye, H. M., Liu, Y., Tang, G. Q. & Zhang, C. L. 2012. In-situ SIMS U–Pb dating of Phanerozoic apatite with low U and high common Pb. Gondwana Research 21, 745–56.CrossRefGoogle Scholar
Lightfoot, P., Sutcliffe, R. & Doherty, W. 1991. Crustal contamination identified in Keweenawan Osler Group tholeiites, Ontario: a trace element perspective. Journal of Geology 99, 739–60.CrossRefGoogle Scholar
Ludwig, K. R. 2003. ISOPLOT 3.0 – A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, No. 4, 70 pp.Google Scholar
Mariano, A. N. 1979. Report of the geology and economic potential of the Prairie Lake carbonatite-alkalic complex. 18 pp.Google Scholar
Mariano, A. N. & Roeder, P. L. 1989. Wöhlerite: chemical composition, cathodoluminescence and environment of crystallization. The Canadian Mineralogist 27, 709–20.Google Scholar
Martin, R. F. 2006. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos 91, 125–36.CrossRefGoogle Scholar
Martin, L. H. J., Schmidt, M. W, Mattsson, H. B. & Guenther, D. 2013. Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1–3 GPa. Journal of Petrology 54, 2301–38.CrossRefGoogle Scholar
McFarlane, C. R. M. & McCulloch, M. T. 2007. Coupling of in-situ Sm/Nd systematics and U/Pb dating of monazite and allanite with applications to crustal evolution studies. Chemical Geology 245, 4560.CrossRefGoogle Scholar
Merino, M., Keller, G. R., Stein, S. & Stein, C. 2013. Variations in Mid-continent rift magma volumes consistent with microplate evolution. Geophysical Research Letters 40, 1513–6.CrossRefGoogle Scholar
Mitchell, R. H. 2009. Peralkaline nephelinite–natrocarbonatite immiscibility and carbonatite assimilation at Oldoinyo Lengai, Tanzania. Contributions to Mineralogy and Petrology 158, 589–98.CrossRefGoogle Scholar
Mitchell, R. H. & Dawson, J. B. 2012. Carbonate-silicate immiscibility and extremely peralkaline silicate glasses from Nasira cone and recent eruptions at Oldoinyo Lengai Volcano, Tanzania. Lithos 152, 40–6.CrossRefGoogle Scholar
Mitchell, R. H. & Platt, R. G. 1978. Mafic mineralogy of ferroaugite syenite from the Coldwell alkaline complex, Ontario, Canada. Journal of Petrology 19, 627–51.CrossRefGoogle Scholar
Mitchell, R. H. & Platt, R. G. 1979. Nepheline-bearing rocks from the Poohbah Lake complex, Ontario: malignites and malignites. Contributions to Mineralogy and Petrology 69, 255–64.CrossRefGoogle Scholar
Mitchell, R. H., Platt, R. G. & Cheadle, S. P. 1983. A gravity study of the Coldwell complex, northwestern Ontario and its petrological significance. Canadian Journal of Earth Sciences 20, 1631–8.CrossRefGoogle Scholar
Mitchell, R. H., Platt, R. G., Lukosius-Sanders, J., Artist-Downey, M. & Moogk-Pickard, S. 1993. Petrology of syenites from center III of the Coldwell alkaline complex, northwestern Ontario, Canada. Canadian Journal of Earth Sciences 30, 145–58.CrossRefGoogle Scholar
Morel, M. L. A., Nebel, O., Nebel-Jacobsen, Y. J., Miller, J. S. & Vroon, P. Z. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC–ICPMS. Chemical Geology 255, 231–5.CrossRefGoogle Scholar
Nicholson, S. W. & Shirey, S. B. 1990. Midcontinent Rift volcanism in the Lake Superior Region: Sr, Nd and Pb isotopic evidence for a mantle plume origin. Journal of Geophysical Research 95, 10851–68.CrossRefGoogle Scholar
Nicholson, S. W., Shirey, S., Schulz, K. & Green, J. 1997. Rift-wide correlation of 1.1 Ga Midcontinent rift system basalts: implications for multiple mantle sources during rift development. Canadian Journal of Earth Sciences 34, 504–20.CrossRefGoogle Scholar
Paces, J. B. & Bell, K. 1989. Non-depleted sub-continental mantle beneath the Superior Province of the Canadian Shield: Nd–Sr isotopic and trace element evidence from Midcontinent Rift basalts. Geochimica et Cosmochimica Acta 53, 2023–35.CrossRefGoogle Scholar
Paces, J. B. & Miller, J. D. Jr 1993. Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. Journal of Geophysical Research 98, 13997–4013.CrossRefGoogle Scholar
Palmer, H. C. & Davis, D. W. 1987. Paleomagnetism and U–Pb geochronology of volcanic rocks from Michipicoten Island, Lake Superior, Canada: precise calibration of the Keweenawan polar wander track. Precambrian Research 37, 157–71.CrossRefGoogle Scholar
Platt, R. G. & Woolley, A. R. 1990. The carbonatites and fenites of Chipman Lake, Ontario. The Canadian Mineralogist 28, 241–50.Google Scholar
Purtich, E., Armstrong, T. & Yassa, A. 2010. Technical Report on the Prairie Lake Property, Thunder Bay Mining Division, Ontario, Canada. NI 43–101 Technical Report, 109 pp.Google Scholar
Rukhlov, A. S. & Bell, K. 2010. Geochronology of carbonatites from the Canadian and Baltic shields, and the Canadian Cordillera: clues to mantle evolution. Mineralogy and Petrology 98, 1154.CrossRefGoogle Scholar
Rukhlov, A. S., Bell, K, & Amelin, Y. 2015. Carbonatites, isotopes and evolution of the subcontinental mantle: an overview. In Symposium on Strategic and Critical Materials (eds Simandl, G. J. & Neetz, M.), pp. 3964. British Columbia Geological Survey Paper 2015-3.Google Scholar
Sage, R. P. 1983. Geology of the Prairie Lake Carbonatite Complex. Ontario. Geological Survey Open File Report, 5412, 133 pp.Google Scholar
Sage, R. P. 1987. Geology of Carbonatite—Alkalic Rock Complexes in Ontario: Prairie Lake Carbonatite Complex, District of Thunder Bay. Ministry of Northern Development and Mines, Ontario Geological Survey, Study 46, 91 pp.Google Scholar
Sano, Y., Oyama, T., Terada, K. & Hidaka, H. 1999. Ion microprobe U–Pb dating of apatite. Chemical Geology 153, 249–58.CrossRefGoogle Scholar
Sasada, T., Hiyagon, H., Bell, K. & Ebihara, M. 1997. Mantle-derived noble gases in carbonatites. Geochimica et Cosmochimica Acta 61, 4219–28.CrossRefGoogle Scholar
Shirey, S., Klewin, K., Berg, J. & Carlson, R. 1994. Temporal changes in the sources of flood basalts: isotopic and trace element evidence from the 1100 Ma old Keweenawan Mamainse Point Formation, Ontario, Canada. Geochimica et Cosmochimica Acta 58, 4475–90.CrossRefGoogle Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
Tappe, S., Foley, S. F., Stracke, A., Romer, R. L., Kjarsgaard, B. A., Heaman, L. M. & Joyce, N. 2007. Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr–Nd–Hf–Pb isotope constraints from alkaline and carbonatite intrusives. Earth and Planetary Science Letters 256, 433–54.CrossRefGoogle Scholar
Tilton, G. R. & Kwon, S. T. 1990. Isotopic evidence for crust-mantle evolution with emphasis on the Canadian Shield. Chemical Geology 83, 149–83.CrossRefGoogle Scholar
Van Schmus, W. R. & Hinze, W. J. 1985. The midcontinent rift system. Annual Review of Earth and Planetary Sciences 13, 345–83.CrossRefGoogle Scholar
Veksler, I. V., Dorfman, A. M., Dulski, P., Kamenetsky, V. S., Danyushevsky, L. V., Jeffries, T. & Dingwell, D. B. 2012. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochimica et Cosmochimica Acta 79, 2040.CrossRefGoogle Scholar
Veksler, I.V., Petibon, C., Jenner, G. A., Dorfman, A. M. & Dingwell, D. B. 1998. Trace element partitioning in immiscible silicate–carbonate liquid systems: an initial experimental study using a centrifuge autoclave. Journal of Petrology 39, 2095–104.CrossRefGoogle Scholar
Vervoort, J. D., Wirth, K., Kennedy, B., Sandland, T. & Harpp, K. S. 2007. The magmatic evolution of the Midcontinent rift: new geochronologic and geochemical evidence from felsic magmatism. Precambrian Research 157, 235–68.CrossRefGoogle Scholar
Windley, B. F. 1993. Proterozoic anorogenic magmatism and its orogenic connections. Journal of Geological Society, London 150, 3950.CrossRefGoogle Scholar
Wingate, M. T. D. & Compston, W. 2000. Crystal orientation effects during ion microprobe U–Pb analysis of baddeleyite. Chemical Geology 168, 7597.CrossRefGoogle Scholar
Woodhead, J. D. & Hergt, J. M. 2005. A preliminary appraisal of seven natural zircon reference materials for in-situ Hf-isotope analysis. Geostandards and Geoanalytical Research 29, 183–95.CrossRefGoogle Scholar
Wu, F. Y., Arzamastsev, A. A., Mitchell, R. H., Li, Q. L., Sun, J., Yang, Y. H. & Wang, R. C. 2013. Emplacement age and Sr–Nd isotopic compositions of the Afrikanda alkaline ultramafic complex, Kola Peninsula, Russia. Chemical Geology 353, 210–29.CrossRefGoogle Scholar
Wu, F. Y., Yang, Y. H., Li, Q. L., Mitchell, R. H., Dawson, J. B., Brand, G. & Yuhara, M. 2011. In situ determination of U–Pb ages and Sr–Nd–Hf isotopic constraints on the petrogenesis of the Phalaborwa carbonatite Complex, South Africa. Lithos 127, 309–22.CrossRefGoogle Scholar
Wu, F. Y., Yang, Y. H., Mitchell, R. H., Bellatreccia, F., Li, Q. L. & Zhao, Z. F. 2010. In situ U–Pb and Nd–Hf–(Sr) isotopic investigations of zirconolite and calzirtite. Chemical Geology 277, 178–95.CrossRefGoogle Scholar
Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J. H. & Xu, P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chemical Geology 234, 105–26.CrossRefGoogle Scholar
Yang, Y. H., Sun, J. F., Xie, L. W., Fan, H. R. & Wu, F. Y. 2008. In situ Nd isotopic measurements of geological samples by laser ablation. Chinese Science Bulletin 53, 1062–70.CrossRefGoogle Scholar
Yang, Y. H., Wu, F. Y., Wilde, S. A., Liu, X. M., Zhang, Y. B., Xie, L. W. & Yang, J. H. 2009. In situ perovskite Sr–Nd isotopic constraints on petrogenesis of the Mengyin kimberlites in the North China Craton. Chemical Geology 264, 2442.CrossRefGoogle Scholar
Yang, Y. H., Wu, F. Y., Yang, J. H., Chew, D. M., Xie, L. W., Chu, Z. Y., Zhang, Y. B. & Huang, C. 2014. Sr and Nd isotopic compositions of apatite reference materials used in U–Th–Pb geochronology. Chemical Geology 385, 3555.CrossRefGoogle Scholar
Supplementary material: File

Wu supplementary material S1

Supplementary Table

Download Wu supplementary material S1(File)
File 68.6 KB