Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T04:15:49.394Z Has data issue: false hasContentIssue false

A deep-marine ichnofaunal assemblage from Llandovery strata of the Welsh Basin, west Wales, UK

Published online by Cambridge University Press:  01 May 2009

Patrick J. Orr
Affiliation:
Department of Geology, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK

Abstract

In the Welsh Basin, turbidites of Llandovery age at Cwmerfyn, near Goginan (Devil’s Bridge Formation) and Neuadd Fawr, near Lampeter, contain similar, diverse, ichnofaunal assemblages, despite strong sedimentological differences between the two localities. The sediments at Cwmerfyn are a series of very thin- to thin-bedded silt/mud couplets. The silt-grade lower half of each couplet is ripple-cross- and/or planar-laminated; the mud-grade upper part is massive. At Neuadd Fawr, the strata are thin- to medium-bedded, and composed of fine- to medium-grained sand; individual beds are parallel-laminated or display pronounced convolute lamination. At both localities, the ichnofaunal assemblage is dominated by endostratal pascichnia observed on intrastratal, bedding-parallel, planes of splitting. All the ichnofauna is post-depositional. Both assemblages are dominated by examples of Nereites cambrensis and macleayii; examples of Neonereites uniserialis and biserialis, Protovirgularia dichotoma, Chondrites, Dictyodora scotica, Helminthoida crassa, two other ichnospecies of Nereites and examples of Nereites isp., Palaeophycus tubularis, Macaronichnus segregatus, Planolites beverleyensis and montanus and a ‘braided trace’ are also present. In contrast, the diverse ichnofaunal assemblage recorded from the Aberystwyth Grits Group by others is both pre-depositional and post-depositional in origin. The former include agrichnia (Paleodictyon and Squamodictyon) and cubichnia (Asteracites and Bergaueria), observed as secondary casts on the soles of turbidites. The differences in composition between this ichnofaunal assemblage and those at Cwmerfyn and Neuadd Fawr are interpreted to be a result of the degree of oxygenation of the sediment profile. In the Aberystwyth Grits, the producers of the agrichnia and cubichnia would have been able to tolerate reduced oxygen levels in the sediment profile, because they maintained a connection with an oxygenated water column. The post-depositional component of the Aberystwyth Grits assemblage is interpreted to represent opportunistic colonization of the sediment profile during short intervals of elevated oxygen conditions produced by episodic turbidite deposition. The producers of the endostratal pascichnia at Cwmerfyn and Neuadd Fawr did not maintain connections with the water column, implying the presence of oxygenated interstitial porewaters during their emplacement.

Type
Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benton, M. J., 1982. Trace fossils from Lower Palaeozoic ocean-floor sediments of Southern Uplands; Scotland. Transactions of the Royal Society of Edinburgh, Earth Sciences 73, 6787.CrossRefGoogle Scholar
Benton, M. J., & Trewin, N. H., 1978. Discussion and comments on Nicholson’s 1872 manuscript ‘Contributions to the study of the errant annelides of the older Palaeozoic rocks’. Publications of the Department of Geology and Mineralogy, University of Aberdeen, No. 1, 116.Google Scholar
Benton, M. J., & Trewin, N. H., 1980. Dictyodora from the Silurian of Peebleshire, Scotland. Palaeontology 23, 501–13.Google Scholar
Billings, E., 1862. New species of fossils from different parts of the Lower, Middle and Upper Silurian rocks of Canada. In Palaeozoic Fossils, Volume 1, 1861–1865, pp. 96168. Geological Survey of Canada Advance Sheets.Google Scholar
Bromley, R. G., 1990. Trace Fossils: Biology and Taphonomy. Special topics in paleontology, 3. London: Unwin and Hyman.Google Scholar
Cave, R., 1979. Sedimentary environments of the basinal Llandovery of mid-Wales. In The Caledonides of the British Isles — Reviewed (eds Harris, A. L., Holland, C. H. and Leake, B. E.), pp. 517–26. Special Publication of the Geological Society of London no. 8.Google Scholar
Cave, R., & Hains, B. A., 1986. Geology of the country between Aberystwyth and Machynlleth. Memoir of the British Geological Survey, Sheet 163 (England and Wales). 148 pp.Google Scholar
Clausen, C. K., & Vilhjálmsson, M., 1986. Substrate control of Lower Cambrian trace fossils from Bornholm, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology 56, 5168.CrossRefGoogle Scholar
Clifton, H. E., & Thompson, J. K., 1978. Macaronichnus segregatus: a feeding structure of shallow marine polychaetes. Journal of Sedimentary Petrology 48, 12931301.Google Scholar
Clifton, T. R., 1984. Heavy mineral concentration at the bottom of polychaete traces in sandy sediments. Journal of Sedimentary Petrology 54, 151–3.Google Scholar
Crimes, T. P., 1970. The significance of trace fossils in sedimentology, stratigraphy and palaeoecology with examples from Lower Palaeozoic strata. In Trace Fossils (eds Crimes, T. P. and Harper, J. C.), pp. 101–26. Geological Journal, Special Issue no. 3. Liverpool: Seel House Press.Google Scholar
Crimes, T. P., & Crossley, J. D., 1980. Inter-turbidite bottom current orientation from trace fossils, with an example from the Silurian flysch of Wales. Journal of Sedimentary Petrology 50, 821–30.Google Scholar
Crimes, T. P., & Crossley, J. D., 1991. A diverse ichnofauna from Silurian flysch of the Aberystywyth Grits Formation, Wales. Geological Journal 26, 2764.CrossRefGoogle Scholar
Curran, H. A., 1985. The trace fossil assemblage of a Cretaceous nearshore environment: Englishtown formation of Delaware, U.S.A. In Biogenic Structures: their Use in Interpreting Depositional Environments (ed. Curran, H. A.), pp. 261–76. Society of Economic Paleontologists and Mineralogists Special Publication no. 35.CrossRefGoogle Scholar
Davies, J. R., Fletcher, C. J. N., Waters, R. A., Wilson, D., Woodhall, D. G., & Zalasiewicz, J. A., 1993. Geology of the country around Llanilar and Rhayader. Memoir of the British Geological Survey, Sheets 178 and 179 (England and Wales).Google Scholar
Ekdale, A. A., 1985. Paleoecology of the marine endobenthos. Palaeogeography, Palaeoclimatology, Palaeoecology 50, 6381.CrossRefGoogle Scholar
Ekdale, A. A., Bromley, R. G., & Pemberton, S. G., 1984. Ichnology. The Use of Trace Fossils in Sedimentology and Stratigraphy. Society of Economic Paleontologists and Mineralogists Short Course 15, 317 pp.Google Scholar
Ekdale, A. A., & Mason, T. R., 1988. Characteristic tracefossil associations in oxygen-poor sediments. Geology 16, 720–3.2.3.CO;2>CrossRefGoogle Scholar
Emmons, E., 1844. The Taconic System Based on Observations in New York, Massachusetts, Maine, Vermont and Rhode Island. Albany: Carroll and Cook, 68 pp.Google Scholar
Fillion, D., 1989. Les critères discriminants à l’intérieur du triptyque Palaeophycus—Planolites—Macaronichnus. Essai de synthèse d’un usage critique. Comptes rendus de l’ Académie des Sciences de Paris, Série 2 309, 169–72.Google Scholar
Fillion, D., & Pickerill, R. K., 1990. Ichnology of the Upper Cambrian(?) to Lower Ordovician Bell Island and Wabana groups of eastern Newfoundland, Canada. Palaeontographica Canadiana 7, 1119.Google Scholar
Frey, R. W., & Pemberton, S. G., 1985. Biogenic structures in outcrops and cores. I. Approaches to ichnology. Bulletin of Canadian Petroleum Geology 33, 72115.Google Scholar
Hall, J., 1847. Palaeontology of New York. Volume I. Containing Descriptions of the Organic Remains of the Lower Division of the New York System. (Equivalent of the Lower Silurian Rocks of Europe). Albany: C. van Benthuysen, 338 pp.Google Scholar
Häntzschel, W., 1975. Part W. Miscellanea. Supplement 1. Trace Fossils and Problematica, 2nd ed. In Treatise on invertebrate paleontology (ed. Teichert, C.). Boulder, Colorado and Lawrence, Kansas: Geological Society of America and University of Kansas.Google Scholar
Keeping, W., 1882. On some remains of plants, Foraminifera and Annelida, in the Silurian rocks of central Wales. Geological Magazine series 29, 485–91.CrossRefGoogle Scholar
Kern, J., 1980. Origin of trace fossils in Polish Carpathian flysch. Lethaia 13, 347–62.CrossRefGoogle Scholar
Ksiażkiewicz, M., 1977. Trace fossils in the flysch of the Polish Carpathians. Palaeontologia Polonica 36, 1208.Google Scholar
Lovell, J. B., 1970. The palaeogeographical significance of lateral variations in the ratio of sandstone to shale and other features of the Aberystwyth Grits. Geological Magazine 107, 147–56.CrossRefGoogle Scholar
Loydell, D. K., 1991. The biostratigraphy and formational relationships of the Upper Aeronian and Lower Telychian (Llandovery, Silurian) formations of western mid-Wales. Geological Journal 26, 209–44.CrossRefGoogle Scholar
Macleay, W. S., 1839. Note on the annelida. In The Silurian System, part II: Organic Remains (ed. Murchison, R. I.), pp. 699701. London: J. Murray.Google Scholar
McCann, T., 1990. Distribution of Ordovician—Silurian ichnofossil assemblages in Wales — implications for Phanerozoic ichnofaunas. Lethaia 23, 243–55.CrossRefGoogle Scholar
McCann, T., 1993. A Nereites ichnofacies from the Ordovician—Silurian succession of the Welsh depositional basin, U.K. Ichnos 2, 118.Google Scholar
M’Coy, F., 1850. On some genera and species of Silurian Radiata in the collection of the University of Cambridge. Annals and Magazine of Natural History; Series 2, 6, 270–90.Google Scholar
M’Coy, F., 1851. On some new Protozoic Annulata. Annals and Magazine of Natural History; Series 2, 7, 394–6.Google Scholar
Miller, W. III, 1991. Paleoecology of graphoglyptids. Ichnos 1, 305–12.CrossRefGoogle Scholar
Murchison, R. I., 1839. The Silurian System. Part I. Founded on geological researches in the counties of Salop, Hereford, Radnor, Montgomery, Caermarthen, Brecon, Pembroke, Monmouth, Gloucester, Worcester, and Stafford; with descriptions of the coal-fields and overlying formations: i–xxxiii and 1–578; Part II. Organic remains: 579768. London: J. Murray.Google Scholar
Nicholson, H. A., 1873. Contributions to the study of the errant annelides of the older Palaeozoic rocks. Royal Society of London Proceedings 21, 288–90. [also published in 1873 in Geological Magazine 10, 309–10.]Google Scholar
Nicholson, H. A., 1978. Contributions to the study of the errant annelides of the older Palaeozoic rocks. Publications of the Department of Geology and Mineralogy; University of Aberden, No. 1, 1744. [posthumous].Google Scholar
Papentin, F., 1973. A Darwinian evolutionary system. III. Experiments on the evolution of feeding patterns. Journal of Evolutionary Biology 39, 431–45.Google Scholar
Papentin, F., & Röder, H., 1975. Feeding patterns: the evolution of a problem and a problem of evolution. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1975, 184–91.Google Scholar
Pickerill, R. K., Fillion, D., & Harland, T. L., 1984. Middle Ordovician trace fossils in carbonates of the Trenton Group between Montreal and Quebec City, St. Lawrence Lowland, eastern Canada. Journal of Paleontology 58, 416–39.Google Scholar
Pickerill, R. K., & Peel, J. S., 1991. Gordia nodosa isnov. and other trace fossils from the Cass Fjord Formation (Cambrian) of North Greenland. Grønlands Geologiske Undersogelse: Rapport 150, 1528.CrossRefGoogle Scholar
Piper, D. J. W., 1978. Turbidite muds and silts on deep-sea fans and abyssal plains. In Sedimentation in Submarine Canyons, Fans, and Trenches (eds Stanley, D. J. and Kelling, G.), pp. 163–76. Stroudsburg, PA: Dowden, Hutchison and Ross.Google Scholar
Raup, D. M., & Seilacher, A., 1969. Fossil foraging behavior: computer simulation. Science 166, 994–5.CrossRefGoogle ScholarPubMed
Richter, R., 1928. Psychische Reaktionen fossiler Tiere. Palaeobiologica 1, 225–44.Google Scholar
Richter, R., 1937. Marken und Spuren aus alien Zeiten I–II. Senckenbergiana 19, 150–69.Google Scholar
Richter, R., 1941. Marken und Spuren im Hunsrückschiefer. 3. Fährten als Zeugnisse des Lebens auf dem Meres-Grunde. Senckenbergiana 23, 218–60.Google Scholar
Schafhäutl, K. E., 1851. Geognostiche Untersuchungen des Südbayerischen Alpengebirges. Literarische-artistische Anstalt (München), 208 pp.Google Scholar
Seilacher, A., 1953. Studien zur Palichnologie. I. Über die Methoden der Palichnologie. Neues Jahrbuch für Geologie und Pälaontologie, Abhandlungen 96, 421–52.Google Scholar
Seilacher, A., 1960. Lebensspuren als Leitfossilïen. Geologische Rundschau 49, 4150.CrossRefGoogle Scholar
Seilacher, A., 1962. Paleontological studies on turbidite sedimentation and erosion. Journal of Geology 70, 227–34.CrossRefGoogle Scholar
Seilacher, A., 1964. Biogenic sedimentary structures. In Approaches to Paleoecology (eds Imbrie, J. and Newell, N.), pp. 296316. New York: John Wiley.Google Scholar
Seilacher, A., 1967. Fossil behavior. Scientific American 217, 7280.CrossRefGoogle Scholar
Seilacher, A., 1974. Flysch trace fossils: evolution of behavioural diversity in the deep-sea. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1974, 233–45.Google Scholar
Seilacher, A., 1977. Pattern analysis of Paleodictyon and related trace fossils. In Trace Fossils (eds Crimes, T. P. and Harper, J. C.), pp. 289334. Geological Journal, Special Issue no. 9. Liverpool: Seel House Press.Google Scholar
Sternberg, K. M. G. von., 1833. Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt, parts 5 and 6, 180. In Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt (von Sternberg, K. M. G., 18201838), 18, 364 pp.Google Scholar
Stow, D. A. V., & Piper, D. J. W., 1984. Deep-water finegrained sediments: facies models. In Fine-grained Sediments: Deep-water Processes and Facies (eds Stow, D. A. V. and Piper, D. J. W.), pp. 611–46. Geological Society of London Special. Publication no. 15. Oxford: Blackwell Scientific.Google Scholar
Wilson, D., Davies, J. R., Waters, R. A., & Zalasiewicz, J. A., 1992. A fault-controlled depositional model for the Aberystwyth Grits turbidite system. Geologial Magazine 129, 595607.CrossRefGoogle Scholar
Wood, A., & Smith, A. J., 1959. The sedimentation and sedimentary history of the Aberystwyth Grits (Upper Llandoverian). Quarterly Journal of the Geological Society of London 114, 163–95.CrossRefGoogle Scholar