Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T21:19:36.910Z Has data issue: false hasContentIssue false

The Central Sudetic Ophiolite (European Variscan Belt): precise U–Pb zircon dating and geotectonic implications

Published online by Cambridge University Press:  19 August 2020

Marek Awdankiewicz*
Affiliation:
University of Wrocław, Institute of Geological Sciences, Pl. Maksa Borna 9, 50-204Wrocław, Poland
Ryszard Kryza
Affiliation:
University of Wrocław, Institute of Geological Sciences, Pl. Maksa Borna 9, 50-204Wrocław, Poland
Krzysztof Turniak
Affiliation:
University of Wrocław, Institute of Geological Sciences, Pl. Maksa Borna 9, 50-204Wrocław, Poland
Maria Ovtcharova
Affiliation:
University of Geneva, Department of Earth Sciences, rue des Maraichers 13, 1205Geneva, Switzerland
Urs Schaltegger
Affiliation:
University of Geneva, Department of Earth Sciences, rue des Maraichers 13, 1205Geneva, Switzerland
*
Author for correspondence: Marek Awdankiewicz, Email: [email protected]

Abstract

Precise U–Pb zircon dating using the chemical abrasion – isotope dilution – thermal ionization mass spectrometry (CA-ID-TIMS) method constrains the age of the Central Sudetic Ophiolite (CSO) in the Variscan Belt of Europe. A felsic gabbro from the Ślęża Massif contains zircon xenocrysts dated at 404.8 ± 0.3 Ma and younger crystals dated at 402.6 ± 0.2 Ma that determine the final crystallization age of the gabbro. An identical age of 402.7 ± 0.3 Ma was determined for plagiogranite from the Nowa Ruda–Słupiec Massif, and plagiogranite from the Braszowice–Brzeźnica Massif yields a similar, but less reliable, age of > 401.2 Ma. The different massifs in the CSO are therefore considered as tectonically dismembered fragments of a single oceanic domain formed at c. 402.6–402.7 Ma (Early Devonian – Emsian). The magmatic activity recorded in the CSO was contemporaneous with the high-temperature/high-pressure metamorphism of granulites and peridotites in the Góry Sowie Massif, separating dismembered parts of the CSO. This suggests geodynamic coupling between the continental subduction recorded in the Góry Sowie and the oceanic spreading recorded in the CSO. Regional geological data indicate that the CSO was obducted before c. 383 Ma, less than 20 Ma after its formation at an oceanic spreading centre. The CSO is shown to be one of the oldest and first obducted among the Devonian ophiolites of the Variscan Belt. The CSO probably originated in an evolved back-arc basin in which the influence of subduction-related fluids and melts increased with time, from negligible during the formation of predominant mid-ocean-ridge-type magmatic rocks to strong at later stages, when rodingites, epidosites and other minor lithologies formed.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased

References

Aleksandrowski, P and Mazur, S (2002) Collage tectonics in the northeasternmost part of the Variscan Belt: the Sudetes, Bohemian Massif. In Palaeozoic Amalgamation of Central Europe (eds Winchester, JA, Pharaoh, TC and Verniers, J), pp. 237–77. Geological Society of London, Special Publication no. 201.Google Scholar
Arenas, R, Sánchez Martínez, S, Gerdes, A, Albert, R, Díez Fernández, R and Andonaegui, P (2014) Re-interpreting the Devonian ophiolites involved in the Variscan suture: U–Pb and Lu–Hf zircon data of the Moeche Ophiolite (Cabo Ortegal Complex, NW Iberia). International Journal of Earth Sciences (Geologische Rundschau) 103, 1385–402.CrossRefGoogle Scholar
Bowring, JF, Mclean, NM and Bowring, SA (2011) Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb_Redux. Geochemistry Geophysics Geosystems, 12, Q0AA19. doi: 10.1029/2010GC003479CrossRefGoogle Scholar
Brueckner, HK, Blusztajn, J and Bakun-Czubarow, N (1996) Trace element and Sm-Nd “age” zoning in garnets from peridotites of the Caledonian and Variscan mountains and tectonic implications. Journal of Metamorphic Geology 14, 6173.CrossRefGoogle Scholar
Cohen, KM, Finney, SC, Gibbard, PL and Fan, J-X (2013, updated). The ICS International Chronostratigraphic Chart. Episodes 36, 199204. Available from: https://stratigraphy.org/icschart/ChronostratChart2019-05.pdfCrossRefGoogle Scholar
Condon, D, Mclean, N, Schoene, B, Bowring, S, Parrish, R and Noble, SR (2008) Synthetic U-Pb ‘standard’ solutions for ID-TIMS geochronology. Geochimica et Cosmochimica Acta 72, A175. 10.1016/j.gca.2008.05.006Google Scholar
Condon, D, Schoene, B, Mclean, N, Bowring, S and Parrish, R (2015) Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochimica et Cosmochimica Acta 164, 464–80.CrossRefGoogle Scholar
Cymerman, Z, Piasecki, MAJ and Seston, R (1997) Terranes and terrane boundaries in the Sudetes, northeast Bohemian Massif. Geological Magazine 134, 717–25.CrossRefGoogle Scholar
Delura, K (2012) Chromitites from the Sudetic ophiolite: origin and alteration. Archivum Mineralogiae Monograph 4, 191.Google Scholar
Dilek, Y and Furnes, H (2014) Ophiolites and their origins. Elements 10, 93100.CrossRefGoogle Scholar
Domeier, M and Torsvik, TH (2014) Plate tectonics in the late Paleozoic. Geoscience Frontiers 5, 303–50.CrossRefGoogle Scholar
Dubińska, E, Bylina, P, Kozłowski, A, Dőrr, W and Nejbert, K (2004) U–Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chemical Geology 203, 183203.CrossRefGoogle Scholar
Dubińska, E and Gunia, P (1997) The Sudetic ophiolite: current view on its geodynamic model. Geological Quarterly 41, 120.Google Scholar
Floyd, PA, Kryza, R, Crowley, QG, Winchester, JA and Abdel Wahed, M (2002) Ślęża ophiolite: geochemical features and relationship to Lower Palaeozoic rift magmatism in the Bohemian Massif. In Palaeozoic Amalgamation of Central Europe (eds Winchester, JA, Pharaoh, TC and Verniers, J), pp. 197215. Geological Society of London, Special Publication no. 201.Google Scholar
Franke, WL, Cocks, RM and Torsvik, TH (2017) The Palaeozoic Variscan oceans revisited. Gondwana Research 48, 257–84.CrossRefGoogle Scholar
Franke, W and Żelaźniewicz, A (2000) The eastern termination of the Variscides: terrane correlation and kinematic. In Orogenic Processes: Quantification and Modelling in the Variscan Belt (eds W Franke, V Haak, O Oncken and D Tanner), pp. 63–86. Geological Society of London, Special Publication no. 179.CrossRefGoogle Scholar
Furnes, H, de Wit, M and Dilek, Y (2014) Four billion years of ophiolites reveal secular trends in oceanic crust formation. Geoscience Frontiers 5, 571603.CrossRefGoogle Scholar
Gerstenberger, H and Haase, G (1997) A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chemical Geology 136, 309–12.CrossRefGoogle Scholar
Goodenough, KM, Thomas, RJ, Styles, MT, Schofield, DI and MacLeod, CJ (2014) Records of ocean growth and destruction in the Oman-UAE Ophiolite. Elements 10, 109–14.CrossRefGoogle Scholar
Hiess, J, Condon, DJ, McLean, N and Noble, SR (2012) 238U/235U systematics in terrestrial uranium-bearing minerals. Science 30, 1610–14.CrossRefGoogle Scholar
Jaffey, AH, Flynn, KF, Glendenin, LE, Bentley, WC and Essling, AM (1971) Precision measurements of half-lives and specific activities of 235U and 238U. Physical Review C 4, 18891906.CrossRefGoogle Scholar
Klukowski, M (2017) Discovery of epidosites in the Mount Ślęża ophiolite (Fore-Sudetic Block, SW Poland). Geological Quarterly 61, 99105.Google Scholar
Krogh, TE (1973) A low contamination method for the hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochimica et Cosmochimica Acta 37, 485–94.CrossRefGoogle Scholar
Kryza, R (2010) The Central-Sudetic ophiolites: SHRIMP zircon geochronology (preliminary results). Mineralogia 37, 8990.Google Scholar
Kryza, R and Pin, C (2010) The Central-Sudetic ophiolites (SW Poland): petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Research 17, 292305.CrossRefGoogle Scholar
Majerowicz, A (1979) The Ślęża Mt group and ophiolite problems. In Field Conference (ed. Gunia, T), pp. 934. 8–9 September 1979, Nowa Ruda, Wydawnictwo Uniwersytetu Wrocławskiego.Google Scholar
Majerowicz, A (1994) Textural features and symptoms of ocean-floor metamorphism in the top part of the Ślęża ophiolite (SW Poland). Archiwum Mineralogiczne 50, 97139.Google Scholar
Majerowicz, A, Kryza, R and Wróblewska, G (2000) Diallagite pegmatitoids from Mt. Ślęża gabbro. In Tectonics of the Ślęża Mt Ophiolite and its Influence on the Distribution of Some Mineral Ores and Groundwater (ed. Mierzejewski, M), pp. 4954. Wrocław: Instytut Nauk Geologicznych, Uniwersytet Wrocławski.Google Scholar
Majerowicz, A and Pin, C (1994) The main petrological problems of the Mt. Ślęża ophiolite complex, Sudetes, Poland. Zentralblatt für Geologie und Paläontologie, Teil I 1992, 9891018.Google Scholar
Martínez Catalán, JR, Collett, S, Schulmann, K, Aleksandrowski, P and Mazur, S (2020) Correlation of allochthonous terranes and major tectonostratigraphic domains between NW Iberia and the Bohemian Massif, European Variscan belt. International Journal of Earth Sciences (Geologische Rundschau) 109, 1105–31. doi: 10.1007/s00531-019-01800-zCrossRefGoogle Scholar
Mattinson, J (2005) Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology 220, 4766.CrossRefGoogle Scholar
Mazur, S, Aleksandrowski, P, Kryza, R and Oberc-Dziedzic, T (2006) The Variscan Orogen in Poland. Geological Quarterly 50, 89118.Google Scholar
Mazur, S, Aleksandrowski, P and Szczepański, J (2010) Outline structure and tectonic evolution of the Variscan Sudetes. Przegląd Geologiczny 58, 133–45.Google Scholar
Murphy, BJ, Gutiérrez-Alonso, G, Nance, RD, Fernández-Suárez, J, Keppie, JD, Quesada, C, Dostal, J and Braid, JA (2009) Rheic Ocean mafic complexes: overview and synthesis. In Ancient Orogens and Modern Analogues (eds JB Murphy, JD Keppie and AJ Hynes), pp. 343–69. Geological Society of London, Special Publication no. 327.CrossRefGoogle Scholar
Nance, RD, Gutiérrez-Alonso, G, Keppie, JD, Linnemann, U, Murphy, JB, Quesada, C, Strachan, RA and Woodcock, NH (2012) A brief history of the Rheic Ocean. Geoscience Frontiers 3, 125–35.CrossRefGoogle Scholar
O’Brien, PJ, Corner, A, Jaeckel, P, Hegner, E, Żelaźniewicz, A and Kryza, R (1997) Petrological and isotopic studies on Paleozoic high pressure granulites, Góry Sowie Mts., Polish Sudetes. Journal of Petrology 38, 433–56.CrossRefGoogle Scholar
Oliver, GJH, Corfu, F and Krough, TE (1993) U–Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. Journal of the Geological Society of London 150, 355–69.CrossRefGoogle Scholar
Pin, C, Majerowicz, A and Wojciechowska, I (1988) Upper Paleozoic oceanic crust in the Polish Sudetes: Nd–Sr isotope and trace element evidence. Lithos 21, 195209.CrossRefGoogle Scholar
Plissart, G, Monnier, C, Diot, H, Mărunţiu, M, Berger, J and Triantafyllou, A (2017) Petrology, geochemistry and Sm-Nd analyses on the Balkan-Carpathian Ophiolite (BCO – Romania, Serbia, Bulgaria): Remnants of a Devonian back-arc basin in the easternmost part of the Variscan domain. Journal of Geodynamics 105, 2750.CrossRefGoogle Scholar
Pupin, JP, Turco, G (1972) Une typologie originale du zircon accessoire. Bulletin de la Société Française de Minéralogie et de Cristallographie 95, 348–59.CrossRefGoogle Scholar
Rioux, M, Bowring, S, Kelemen, P, Gordon, S, Miller, R and Dudás, F (2013) Tectonic development of the Samail ophiolite: High-precision U-Pb zircon geochronology and Sm-Nd isotopic constraints on crustal growth and emplacement. Journal of Geophysical Research: Solid Earth 118, 2085–101.Google Scholar
Sánchez-Martínez, S, Arenas, R, Díaz-García, F, Martínez Catalán, JR, Gómez-Barreiro, J and Pearce, JJA (2007) Careón ophiolite, NW Spain: suprasubduction zone setting for the youngest Rheic ocean floor. Geology 35, 153–6.CrossRefGoogle Scholar
Schoene, B, Crowley, J, Condon, D, Schmitz, M and Bowring, S (2006) Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. Geochimica et Cosmochimica Acta 70, 426–45.CrossRefGoogle Scholar
Wendt, I and Carl, C (1991) The statistical distribution of the mean squared weighted deviation. Chemical Geology: Isotope Geoscience Section 86, 275285.Google Scholar
Wojtulek, PM, Puziewicz, J and Ntaflos, T (2016a) Melt impregnation phases in the mantle section of the Ślęża ophiolite (SW Poland). Chemie der Erde 76, 299308.CrossRefGoogle Scholar
Wojtulek, PM, Puziewicz, J and Ntaflos, T (2017) MORB melt metasomatism and deserpentinization in the peridotitic member of Variscan ophiolite: an example of the Braszowice–Brzeźnica serpentinites (SW Poland). Journal of Geosciences 62, 147–64.CrossRefGoogle Scholar
Wojtulek, PM, Puziewicz, J, Ntaflos, T and Bukała, M (2016b) Podiform chromitites from the Variscan ophiolite serpentinites of Lower Silesia (SW Poland) – petrologic and tectonic setting implications. Geological Quarterly 60, 5666.Google Scholar
Wojtulek, PM, Schulz, B, Delura, K and Dajek, M (2019) Formation of chromitites and ferrogabbros in ultramafic and mafic members of the Variscan Ślęża ophiolite (SW Poland). Ore Geology Reviews 106, 97112.CrossRefGoogle Scholar
Żelaźniewicz, A, Dörr, W and Dubińska, E (1998) Lower Devonian oceanic crust from U-Pb zircon evidence and Eo-Variscan event in the Sudetes. Terra Nostra 98, 174176.Google Scholar