Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T01:18:03.273Z Has data issue: false hasContentIssue false

Carbon isotope perturbations and faunal changeovers during the Guadalupian mass extinction in the middle Yangtze Platform, South China

Published online by Cambridge University Press:  05 June 2017

HENGYE WEI*
Affiliation:
State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi Province, 330013, China School of Earth Science, East China University of Technology, Nanchang, Jiangxi Province, 330013, China
QUZONG BAIMA
Affiliation:
School of Earth Science, East China University of Technology, Nanchang, Jiangxi Province, 330013, China
ZHEN QIU*
Affiliation:
PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
CHAOCHENG DAI
Affiliation:
State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi Province, 330013, China
*
Authors for correspondence: [email protected]; [email protected]
Authors for correspondence: [email protected]; [email protected]

Abstract

The Guadalupian mass extinction took place during the major global environmental changes during Phanerozoic time. Large-scale sea-level fluctuations and a negative shift of δ13C were associated with this crisis. However, the diagenetic or primary origin of the decreased δ13C across the Guadalupian–Lopingian (G–L) boundary and the potential causes for this biotic crisis are still being intensely debated. Integrated analyses, including detailed petrographic examination, identification of foraminifer and fusulinid genera, and analysis of carbonate δ13Ccarb and bulk δ13Corg across the G–L boundary were therefore carried out at Tianfengping, Hubei Province, South China. Our results show that: (1) some foraminifer and most fusulinid genera disappear in the upper Maokou Formation (upper Guadalupian); (2) the negative shift of δ13Ccarb in the uppermost Maokou Formation is of diagenetic origin, but the values of δ13Ccarb in the remainder of the Maokou Formation and in the Wuchiaping Formation represent a primary signal of coeval seawater; and (3) the bulk δ13Corg perturbation across the G–L boundary at Tianfengping is mainly controlled by organic matter (OM) source, that is, terrestrial OM contribution. We suggest that the δ13Ccarb negative shift in the lower Wuchiaping Formation (Wuchiapingian) compared to that in the lower–middle Maokou Formation (Capitanian) were probably caused by the re-oxidization of 12C-rich OM during regression. Global regression resulted in the negative shift of δ13Ccarb at the G–L boundary in South China and led to the loss of shallow-marine benthic habitat. Large-scale global regression is probably one of the main causes for this bio-crisis.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T. J., Ellwood, B., Nguyen, T. K. T., Rowe, H. & Maynard, J. B. 2007. The Permian-Triassic boundary at Nhi Tao, Vietnam: Evidence for recurrent influx of sulfidic watermasses to a shallow-marine carbonate platform. Palaeogeography, Palaeoclimatology, Palaeoecology 252, 304–27.Google Scholar
Ali, J. R., Thompson, G. M., Zhou, M. F. & Song, X. 2005. Emeishan large igneous province, SW China. Lithos 79, 475–89.Google Scholar
Baud, A., Magaritz, M. & Holser, W. T. 1989. Permian-Triassic of the Tethys: Carbon isotope studies. Geologische Rundschau 78, 649–77.Google Scholar
Berner, R. A. 2002. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proceedings of the National Academy of Sciences of the United States of America 99, 4172–7.Google Scholar
Bond, D. P. G., Wignall, P. B., Joachimski, M. M., Sun, Y., Savov, I., Grasby, S. E., Beauchamp, B. & Blomeier, D. P. G. 2015. An abrupt extinction in the middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification. GSA Bulletin 127, 1411–21.Google Scholar
Bond, D. P. G., Wignall, P. B., Wang, W., Izon, G., Jiang, H., Lai, X., Sun, Y., Newton, R. J., Shao, L., Védrine, S. & Cope, H. 2010. The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 292, 282–94.Google Scholar
Broecker, W. S. & Peacock, S. 1999. An ecologic explanation for the Permo-Triassic carbon and sulfur isotope shifts. Global Biogeochemical Cycles 13, 1167–72.Google Scholar
Buggisch, W., Krainer, K., Schaffhauser, M., Joachimski, M. & Korte, C. 2015. Late Carboniferous to Late Permian carbon isotope stratigraphy: A new record from post-Variscan carbonates from the Southern Alps (Austria and Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 433, 174–90.Google Scholar
Chen, B., Joachimski, M. M., Sun, Y., Shen, S. & Lai, X. 2011. Carbon and conodont apatite oxygen isotope records of Guadalupian-Lopingian boundary sections: Climatic or sea-level signal? Palaeogeography, Palaeoclimtology, Palaeoecology 311, 145–53.Google Scholar
Chen, L., Li, Z., Huang, Z., Zhang, K. & Duan, W. 2000. Discovery of the clastic rocks in the basal part of the Permian Gufeng Formation in Huangyan, Jianshi, Hubei and its significance. Journal of Stratigraphy 24, 207–9 (in Chinese with English abstract).Google Scholar
Chen, W., Liu, J., Wang, Z. & Zheng, Q. 2003. Study on lithofacies palaeogeography during the Permian Emeishan basalt explosion in Guizhou Province. Journal of Palaeogeography 5, 1728 (in Chinese with English abstract).Google Scholar
Chen, Z. Q., George, A. D. & Yang, W. R. 2009. Effects of Middle-Late Permian sea-level changes and mass extinction on the formation of the Tieqiao skeletal mound in the Laibin area, South China. Australian Journal of Earth Sciences 56, 745–63.Google Scholar
Clapham, M. E., Shen, S. & Bottjer, D. J. 2009. The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology 35, 3250.Google Scholar
Courtillot, V. 1999. Evolutionary Catastrophes: The Science of Mass Extinction. Cambridge: Cambridge University Press, 237 pp.Google Scholar
Deconinck, J. F., Craquin, S., Bruneau, L., Pellenard, P., Baudin, F. & Feng, Q. 2014. Diagenesis of claystone minerals and K-bentonites in Late Permian/Early Triassic sediments of the Sichuan Basin (Chaotian section, Central China). Journal of Asian Earth Sciences 81, 2837.Google Scholar
Du, X., Song, X., Zhang, M., Lu, Y., Lu, Y., Chen, P., Liu, Z. & Yang, S. 2015. Shale gas potential of the Lower Permian Gufeng Formation in the western area of the Lower Yangtze Platform, China. Marine and Petroleum Geology 67, 526–43.Google Scholar
Feng, Z., Yang, Y. & Jin, Z. 1997. Lithofacies Paleogeography of Permian of South China. Dongying: Petroleum University Press, 75 pp. (in Chinese).Google Scholar
Foster, C. B., Logan, G. A., Summons, R. E., Gorter, J. D. & Edwards, D. S. 1997. Carbon isotopes, kerogen types and the Permian-Triassic boundary in Australia: Implications for exploration. Australian Petroleum Production and Exploration Association Journal 37, 472–89.Google Scholar
Galimov, E. M. 2006. Isotope organic geochemistry. Organic Geochemistry 37, 1200–62.Google Scholar
Hada, S., Khosithanont, S., Goto, H., Fontaine, H. & Salyapongse, S. 2015. Evolution and extinction of Permian fusulinid fauna in the Khao Tham Yai Limestone in NE Thailand. Journal of Asian Earth Sciences 104, 175–84.Google Scholar
Hansen, H. J. 2006. Stable isotopes of carbon from basaltic rocks and their possible relation to atmospheric isotope excursions. Lithos 92, 105–16.Google Scholar
Haq, B. U. & Schutter, S. R. 2008. A chronology of Paleozoic sea-level changes. Science 322, 64–8.Google Scholar
He, B., Xu, Y., Chung, S., Xiao, L. & Wang, Y. 2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters 213, 391405.Google Scholar
He, B., Xu, Y., Wang, Y. & Luo, Z. 2006. Sedimentary and lithofacies paleogeography in Southwestern China before and after the Emeishan flood volcanism: New insights into surface response to mantle plume activity. Journal of Geology 114, 117–32.Google Scholar
He, B., Xu, Y. G., Zhong, Y. T. & Guan, J. P. 2010. The Guadalupian-Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism. Lithos 119, 1019.Google Scholar
Hermann, E., Hochuli, P. A., Bucher, H., Vigran, J. O., Weissert, H. & Bernasconi, S. M. 2010. A close-up view of the Permian-Triassic boundary based on expanded organic carbon isotope records from Norway (Trøndelag and Finnmark Platform). Global and Planetary Change 74, 156–67.Google Scholar
Holser, W. T. & Magaritz, M. 1987. Events near the Permian-Triassic boundary. Modern Geology 11, 155–80.Google Scholar
Holser, W.T. & Magaritz, M. 1992. Cretaceous/Tertiary and Permian/Triassic boundary events compared. Geochimica et Cosmochimica Acta 56, 3297–309.Google Scholar
Isozaki, Y. 1997. Permo-Triassic boundary superanoxia and stratified superocean: Record from lost deep sea. Science 276, 235–8.Google Scholar
Isozaki, Y. & Aljinović, D. 2009. End-Guadalupian extinction of the Permian gigantic bivalve Alatoconchidae: end of gigantism in tropical seas by cooling. Palaeogeography, Palaeoclimatology, Palaeoecology 284, 1121.Google Scholar
Isozaki, Y., Aljinovic, D. & Kawahata, H. 2011. The Guadalupian (Permian) Kamura event in European Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 1221.Google Scholar
Isozaki, Y., Kawahata, H. & Minoshima, K. 2007. The Capitanian (Permian) Kamura cooling event: the beginning of the Paleozoic-Mesozoic transition. Palaeoworld 16, 1630.Google Scholar
Isozaki, Y., Kawahata, H. & Ota, A. 2007. A unique carbon isotope record across the Guadalupian-Lopingian (Middle-Upper Permian) boundary in mid-oceanic paleo-atoll carbonates: the high-productivity “Kamura event” and its collapse in Panthalassa. Global and Planetary Science Change 55, 2138.Google Scholar
Isozaki, Y., Yao, J., Ji, Z., Saitoh, M., Kobayashi, N. & Sakai, H. 2008. Rapid sea-level change in the Late Guadalupian (Permian) on the Tethyan side of Sout China: litho- and biostratigraphy of the Chaotian section in Sichuan. Proceedings of the Japan Academy Series B 84, 344–53.Google Scholar
Jin, Y., Shen, S., Henderson, C. M., Wang, X., Wang, W., Wang, Y., Cao, C. & Shang, Q. 2006. The Global Stratotype Section and Point (GSSP) for the boundary between the Capitanian and Wuchiapingian Stage (Permian). Episodes 29, 253–62.Google Scholar
Jin, Y., Zhang, J. & Shang, Q. 1994. Two phases of the end-Permian mass extinction. Canadian Society of Petroleum Geologists 17, 813–22.Google Scholar
Joachimski, M. M. 1994. Subaerial exposure and deposition of shallowing upward sequences: evidence from stable isotopes of Purbeckian pertidal carbonates (basal Cretaceous), Swiss and French Jura Mountains. Sedimentology 41, 805–24.Google Scholar
Jost, A. B., Mundil, R., He, B., Brown, S. T., Altiner, D., Sun, Y., DePaolo, D. J. & Payne, J. L. 2014. Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes. Earth and Planetary Science Letters 396, 201–12.Google Scholar
Kametaka, M., Takebe, M., Nagai, H., Zhu, S. & Takayanagi, Y. 2005. Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China; the Gufeng Formation: a continental shelf radiolarian chert. Sedimentary Geology 174, 197222.Google Scholar
Knauth, L. P. & Kennedy, M. J. 2009. The late Precambrian greening of the Earth. Nature 460, 728–32.Google Scholar
Kobayashi, F. 2012. Middle and Late Permian foraminifers from the Chichibu belt, Takachiho area, Kyushu, Japan: Implications for faunal events. Journal of Paleontology 86, 669–87.Google Scholar
Kofukuda, D., Isozaki, Y. & Igo, H. 2014. A remarkable sea-level drop and relevant biotic responses across the Guadalupian-Lopingian (Permian) boundary in low-latitude mid-Panthalassa: Irreversible changes recorded in accreted paleo-atoll limestones in Akasaka and Ishiyama, Japan. Journal of Asian Earth Sciences 82, 4765.Google Scholar
Korte, C. & Kozur, H. 2010. Carbon-isotope stratigraphy across the Permian-Triassic boundary: a review. Journal of Asian Earth Sciences 39, 215–35.Google Scholar
Korte, C., Veizer, J., Leythaeuser, D., Below, R. & Schwark, L. 2001. Evolution of Permian and Lower Triassic δ13C in marine and terrigenous organic material. Terra Nostra 4, 30–4.Google Scholar
Kozur, H. 1993. Upper Permian radiolaria from the Sosio Valley area, western Sicily (Italy) and from the uppermost Lamar Limestone of West Texas. Jahrbuch der Geologischen Bundesanstalt Wien 136 (1), 99123.Google Scholar
Kraus, S. H., Brandner, R., Heubeck, C., Kozur, H. W., Struck, U. & Korte, C. 2013. Carbon isotope signatures of latest Permian marine successions of the Southern Alps suggest a continental runoff pulse enriched in land plant material. Fossil Record 16 (1), 97109.Google Scholar
Krull, E. S. 1999. Permian palsa mires as palaeoenvironmental proxies. Palaios 14, 530–44.Google Scholar
Küspert, W. 1982. Environmental changes during oil shale deposition as deduced from stable isotope ratios. In Cyclic and Event Stratification (eds Einsele, G. & Seilacher, A.), pp. 482501. Berlin: Springer.Google Scholar
Lai, X., Wang, W., Wignall, P. B., Bond, D. P. G., Jiang, H., Ali, J. R., John, E. H. & Sun, Y. 2008. Palaeoenvironmental change during the end-Guadalupian (Permian) mass extinction in Sichuan, China. Palaeogeography, Palaeoclimatology, Palaeoecology 269, 7893.Google Scholar
Liu, G., Jin, Z., Luo, K. & Peng, J. 2014. Oil and source correlation in Huangqiao and Jurong areas, Lower Yangtze region. Petroleum Geology & Experiment 36 (3), 359–66 (in Chinese with English abstract).Google Scholar
Magaritz, M. 1989. 13C minima follow extinction events: a clued to faunal radiation. Geology 17, 337–40.Google Scholar
Marshall, J. D. 1992. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geological Magazine 129, 143–60.Google Scholar
Melim, L. A., Swart, P. K. & Eberli, G. P. 2004. Mixing-zone diagenesis in the subsurface of Florida and the Bahamas. Journal of Sedimentary Research 74, 904–13.Google Scholar
Muttoni, G., Gaetani, M., Kent, D., Sciunnach, D., Angiolini, L., Berra, F., Garzanti, E., Mattei, M. & Zanchi, A. 2009. Opening of the NeoTethys Ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia 14 (4), 1748.Google Scholar
Nishikane, Y., Kaiho, K., Henderson, C. M., Takahashi, S. & Suzuki, N. 2014. Guadalupian-Lopingian conodont and carbon isotope stratigraphies of a deep chert sequence in Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 403, 1629.Google Scholar
Niu, Z., Duan, Q., Fu, T., Xu, A., Zeng, B. & Zhu, Y. 2000. Paleokarst unconformity on top of the Maokou Formation in the Jianshi-Badong area, Hubei: its discovery and significance. Regional Geology of China 19, 276–81 (in Chinese with English abstract).Google Scholar
Preto, N., Spotl, C. & Guaiumi, C. 2009. Evaluation of bulk carbonate delta C-13 data from Triassic hemipelagites and the initial composition of carbonate mud. Sedimentology 56, 1329–45.Google Scholar
Qiu, Z., Wang, Q., Zou, C., Yan, D. & Hou, L. 2013. Carbon isotope negative excursion and its significance during the Middle–Late Permian transition in the Laibin area. Geological Review 59 (supp.), 1228–31 (in Chinese).Google Scholar
Qiu, Z., Wang, Q., Zou, C., Yan, D. & Wei, H. 2014. Transgressive-regressive sequences on the slope of an isolated carbonate platform (Middle-Late Permian, Laibin, South China). Facies 60, 327–45.Google Scholar
Rosales, I., Quesada, S. & Robles, S. 2001. Primary and diagenetic isotopic signals in fossils and hemipelagic carbonates: the lower Jurassic of northern Spain. Sedimentology 48, 1149–69.Google Scholar
Saitoh, M., Isozaki, Y., Ueno, Y., Yoshida, N., Yao, J. & Ji, Z. 2013a. Middle-Upper Permian carbon isotope stratigraphy at Chaotian, South China: Pre-extinction multiple upwelling of oxygen-depleted water onto continental shelf. Journal of Asian Earth Sciences 67–8, 5162.Google Scholar
Saitoh, M., Isozaki, Y., Yao, J., Ji, Z., Ueno, Y. & Yoshida, N. 2013b. The appearance of an oxygen-deplete condition on the Capitanian disphotic slope/basin in South China: Middle-Upper Permian stratigraphy at Chaotian. Global and Planetary Change 105, 180–92.Google Scholar
Saitoh, M., Ueno, Y., Isozaki, Y., Nishizawa, M., Shozugawa, K., Kawamura, T., Yao, J., Ji, Z., Takai, K., Yoshida, N. & Matsuo, M. 2014. Isotopic evidence for water-column denitrification and sulfate reduction at the end-Guadalupian (Middle Permian). Global and Planetary Change 123, 110–20.Google Scholar
Saitoh, M., Ueno, Y., Matsu'ura, F., Kawamura, T., Isozaki, Y., Yao, J., Ji, Z. & Yoshida, N. 2017. Multiple sulfur isotope records at the end-Guadalupian (Permian) at Chaotian, China: implications for a role of bioturbation in the Phanerozoic sulfur cycle. Journal of Asian Earth Sciences 135, 70–9.Google Scholar
Scotese, C. R. & Langford, R. P. 1995. Pangea and paleogeography of the Permian. In The Permian of Northern Pangea (eds Scholle, P. A., Peryt, T. M. & Ulmer-Scholle, D. S.), pp. 319. Berlin: Springer, vol. 1.Google Scholar
Shen, S. Z., Cao, C., Zhang, H., Bowring, S. A., Henderson, C. M., Payne, J. L., Davydov, V. I., Chen, B., Yuan, D., Zhang, Y., Wang, W. & Zheng, Q. 2013. High-resolution δ;13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in South China and Iran. Earth and Planetary Science Letters 375, 156–65.Google Scholar
Shen, S. Z. & Shi, G. R. 1996. Diversity and extinction patterns of Permian brachiopoda of South China. Historical Biology 12, 93110.Google Scholar
Shen, S. Z. & Shi, G. R. 2002. Paleobiogeographical extinction patterns of Permian brachiopods in the Asian-western Pacific Region. Paleobiology 28, 449–63.Google Scholar
Shen, S. Z., Wang, Y., Henderson, C. M., Cao, C. & Wang, W. 2007. Biostratigraphy and lithofacies of the Permian System in the Laibin-Heshan area of Guangxi, South China. Palaeoworld 16, 120–39.Google Scholar
Shi, L., Feng, Q., Shen, J., Ito, T. & Chen, Z. Q. 2016. Proliferation of shallow-water radiolarian coinciding with enhanced oceanic productivity in reducing conditions during the Middle Permian, South China: evidence from the Gufeng Formation of western Hubei Province. Palaeogeography, Palaeoclimatology, Palaeoecology 444, 114.Google Scholar
Siegert, S., Kraus, S.H., Mette, W., Struck, U. & Korte, C. 2011. Organic carbon isotope values from the Late Permian Seis/Siusi succession (Dolomites, Italy): Implications for palaeoenvironmental changes. Fossil Record 14, 207–17.Google Scholar
Stanley, S. M. & Yang, X. 1994. A double mass extinction at the end of the Paleozoic Era. Science 266, 1340–4.Google Scholar
Sun, Y., Lai, X., Wignall, P. B., Widdowson, M., Ali, J., Jiang, H., Wang, W., Yan, C., Bond, D. P. G. & Védrine, S. 2010. Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models. Lithos 119, 2033.Google Scholar
Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H. & Wignall, P. B. 2001. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29, 351–4.Google Scholar
Wang, W., Cao, C. & Wang, Y. 2004. The carbon isotope excursion on GSSP candidate section of Lopingian-Guadalupian boundary. Earth and Planetary Science Letters 220, 5767.Google Scholar
Wang, X. & Sugiyama, T. 2000. Diversity and extinction patterns of the Permian corals in China. Lethaia 33, 285–94.Google Scholar
Wang, Y. & Jin, Y. 2000. Permian palaeogeographic evolution of the Jiangnan Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 160, 3544.Google Scholar
Ward, P. D., Botha, J., Buick, R., De Kock, M. O., Erwin, D. H., Garison, G. H., Kirschvink, J. L. & Smith, R. 2005. Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science 307, 709–14.Google Scholar
Wei, H., Chen, D., Yu, H. & Wang, J. 2012. End-Guadalupian mass extinction and negative carbon isotope excursion at Xiaojiaba, Guangyuan, Sichuan. Science China Earth Science 55, 1480–8.Google Scholar
Wei, H., Wei, X., Qiu, Z., Song, H. & Shi, G. 2016. Redox conditions across the G-L boundary in South China: evidence from pyrite morphology and sulfur isotopic compositions. Chemical Geology 440, 114.Google Scholar
Weidlich, O. 2002. Permian reefs re-examined: extrinsic control mechanisms of gradual and abrupt changes during 40 my of reef evolution. Geobios Mémoire Spécial 24, 287–94.Google Scholar
Weissert, H., Joachimski, M. & Sarnthein, M. 2008. Chemostratigraphy. Newsletters on Stratigraphy 42, 145–79.Google Scholar
Wignall, P. B., Bond, D. P. G., Haas, J., Wang, W., Jiang, H., Lai, X., Altiner, D., Védrine, S., Hips, K., Zajzon, N., Sun, Y. & Newton, R. J. 2012. Capitanian (middle Permian) mass extinction and recovery in western Tethys: a fossil, facies, and δ13C study from Hungary and Hydra Island (Greece). Palaios 27, 7889.Google Scholar
Wignall, P. B., Sun, Y., Bond, D. P. G., Izon, G., Newton, R. J., Védrine, S., Widdowson, M., Ali, J. R., Lai, X., Jiang, H., Cope, H. & Bottrell, S. H. 2009a. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science 324, 1179–82.Google Scholar
Wignall, P. B., Védrine, S., Bond, D. P. G., Wang, W., Lai, X., Ali, J. R. & Jiang, H. 2009b. Facies analysis and sea-level change at the Guadalupian-Lopingian Global Stratotype (Laibin, South China), and its bearing on the end-Guadalupian mass extinction. Journal of the Geological Society, London 166, 655–66.Google Scholar
Xia, W., Zhang, N., Kakuwa, Y. & Zhang, L. 2006. Radiolarian and conodont biozonation in the pelagic Guadalupian-Lopingian boundary interval at Dachongling, Guangxi, South China, and mid-upper Permian global correlation. Stratigraphy 2, 217–38.Google Scholar
Xu, Y., Chung, S., Jahn, B. M. & Wu, G. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos 58, 145–68.Google Scholar
Yan, D., Zhang, L. & Qiu, Z. 2013. Carbon and sulfur isotopic fluctuations associated with the end-Guadalupian mass extinction in South China. Gondwana Research 24, 1276–82.Google Scholar
Yao, L., Gao, Z., Yang, Z. & Long, H. 2002. Origin of seleniferous cherts in Yutangba Se deposit, southwest Enshi, Hubei Province. Science China Earth Science 45, 741–54.Google Scholar
Yin, H. F., Huang, S., Zhang, K., Hansen, H., Yang, F., Ding, M. & Bie, X. 1992. The effects of volcanism on the Permo-Triassic mass extinction in South China. In Permo-Triassic Events in the Eastern Tethys (ed. Sweet, W. C.), pp. 146–57. Cambridge: Cambridge University Press.Google Scholar
Yin, H. F., Jiang, H., Xia, W., Feng, Q., Zhang, N. & Shen, J. 2014. The end-Permian regression in South China and its implication on mass extinction. Earth-Science Reviews 137, 1933.Google Scholar
Zhang, G., Zhang, X., Li, D., Farquhar, J., Shen, S., Chen, X. & Shen, Y. 2015. Widespread shoaling of sulfidic waters linked to the end-Guadalupian (Permian) mass extinction. Geology 43, 1091–4.Google Scholar
Zhang, Z., Wang, Y. & Zheng, Q. 2015. Middle Permian smaller foraminifers from the Maokou Formation at the Tieqiao section, Guangxi, South China. Palaeoworld 24, 263–76.Google Scholar
Zhong, Y. T., He, B., Mundil, R. & Xu, Y. G. 2014. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province. Lithos 204, 14–9.Google Scholar
Zhong, Y. T., He, B. & Xu, Y. G. 2013. Mineralogy and geochemistry of claystones from the Guadalupian-Lopingian boundary at Penglaitan, South China: Insights into the pre-Lopingian geological events. Journal of Asian Earth Sciences 62, 438–62.Google Scholar
Zhou, M. F., Malpas, J., Song, X. Y., Robinson, P. T., Sun, M., Kennedy, A. K., Lesher, C. M. & Keays, R. R. 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Science Letters 196, 113–22.Google Scholar
Zhu, T. 1989. Sedimentological features and the genesis of lower Permian nodular and thin-bedded siliceous rocks in southern Anhui. Journal of Palaeogeography 43 (5), 18 (in Chinese with English abstract).Google Scholar