The zymogram phenotypes of 11 enzymes were determined for 22 Triticum aestivum cv. Chinese Spring-Elytrigia elongata disomic and ditelosomic chromosome addition lines. Eleven isozyme structural genes were located in specific arms of six E. elongata chromosomes, as follows: Gpi-E1 in 1ES, Est-E1 in 3ES, Got-E3 in 3EL, Adh-E1 and Lpx-E1 in 4ES, Adh-E2 and Lpx-E2 in 5EL, Amp-E1 in 6Eα, Adh-E3 and Got-E2 in 6Eβ, and Ep-E1 in 7EL. The E. elongata chromosomes present in five disomic addition lines have previously been designated 1E, 2E, 4E, 6E, and 7E to indicate their homoeology with Chinese Spring chromosomes. The results of this study support these designations. The development of disomic putative 3E and 5E addition lines is reported. The added chromosomes designated IV, V, and VI that are present in three of the seven original disomic T. aestivum-E. elongata addition lines are translocated. Evidence that VL and VIL are opposite arms of 2E and that IV is partially homoeologous to 3E has been published. The results reported in this paper indicate that IVS = 3ES, IVL = 7EL, VS = 3ES, and VIS = 5ES and are consistent with VL and VIL being opposite arms of 2E. The synteny relationships of the 11 E. elongata isozyme genes identified in this study are fully consistent with those of homoeologous T. aestivum cv. Chinese Spring genes and thus provide evidence that the gene synteny groups which these two species inherited from their common ancestor are conserved. This study further documents the valuable role that studies of isozyme genes can play in the isolation, characterization, and maintenance of alien chromosomes, telosomes, and chromosomal segments in wheat strains.