Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T17:16:18.108Z Has data issue: false hasContentIssue false

Six new loci controlling resistance to p-fluorophenylalanine in Aspergillus nidulans

Published online by Cambridge University Press:  14 April 2009

Sheela Srivastava
Affiliation:
Department of Botany, University of Delhi, Delhi-110007, India
Umakant Sinha
Affiliation:
Department of Botany, University of Delhi, Delhi-110007, India
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Twelve FPA-resistant mutants were selected on medium containing p-fluorophenylalanine and ethionine. Dominance tests in heterozygous diploids showed that 8 out of 12 are dominant and 4 recessive to their wild-type alleles. One mutant, fpa60, showed a partial requirement for tyrosine and was found to be allelic to an fpaA mutant described previously. A tyrosine non-requirer, fpa65, was also assigned to this locus. The other 10 mutants did not show any growth requirement and were simultaneously resistant to ethionine and 3-amino-L-tyrosine. Of the 8 dominant mutants, 3 were allelic to the permease-mutants at the locus fpaD. Dominant mutants showed higher degrees of resistance than recessive ones. Six new loci, identified after preliminary genetic analysis, were located on 3 linkage groups: 3 on linkage group VI, and one each on linkage groups I, V, and VIII. The recombinant fpaD11; fpaK69 was found to be sensitive to FPA.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Ames, G. F. (1964). Uptake of amino acids by Salmonella typhimurium. Archives of Biochemistry Biophysics 104, 118.Google Scholar
Balassa, G. (1969). Biochemical genetics of bacterial sporulation. I. Unidirectional pleiotropic interactions among genes controlling sporulation in Bacillus subtilis. Molecular & General Genetics 104, 73103.CrossRefGoogle ScholarPubMed
Barker, C. & Lewis, D. (1970). Resistance to p-fluorophenylalanine in a mutant strain of Coprinus lagopus. Heredity (Abstr.) 25, 490.Google Scholar
Brooks, C. J., Debusk, B. G., Debusk, A. G. & Catcheside, D. E. A. (1972). A new class of p-fluorophenylalanine-resistant mutants in Neurospora crassa. Biochemical Genetics 6, 239254.Google Scholar
Bussey, H. & Umbarger, H. E. (1970). Biosynthesis of the branched chain amino acids in yeast: A trifluoroleucine-resistant mutant with altered regulation of leucine uptake. Journal of Bacteriology 103, 286294.Google Scholar
Chattoo, B. B. & Sinha, U. (1974). Mutagenic activity of N-methyl-N′-nitro-N-nitrosoguanidine (NTG) and N-methyl-N-nitrosourea (NMU) in Aspergillus nidulans. Mutation Research 23, 4149.CrossRefGoogle Scholar
Clutterbuck, A. J. (1970). List of gene symbols, locus letters and allele numbers which have been used or suggested in Aspergillus nidulans up to May 1970. Aspergillus News Letter 11, 2633.Google Scholar
Cohen, G. N. & Adelberg, E. A. (1958). Kinetics of incorporation of p-fluorophenylalanine by a mutant of Escherichia coli resistant to this analogue. Journal of Bacteriology 76, 328330.Google Scholar
Cohen, G. N. & Munier, R. (1959). Effects des analogues structuraux d'amino acides sur la croissance, la synthèse de proténes et la synthèse d'enzymes chez Escherichia coli. Bio chimica et biophysica acta 31, 347356.CrossRefGoogle Scholar
Cowie, D. B., Cohen, G. N., Bolton, E. T. & Robichon-Szulmajster, H. D. (1959). Amino acid incorporation into bacterial proteins. Biochimica et biophysica acta 34, 3946.Google Scholar
Dorn, G. L. (1967). A revised map of the eight linkage groups of Aspergillus nidulans. Genetics 56, 619631.Google Scholar
Dunn, N. W. & Holloway, B. W. (1971). Pleiotropy of p-fluorophenylalanine-resistant and antibiotic hypersensitive mutants of Pseudomonas aeruginosa. Genetical Research 18, 185197.Google Scholar
Ezekiel, D. H. (1965). False feed-back inhibition of aromatic amino acid biosynthesis by β-2- thienylalanine. Biochimica et biophysica acta 95, 5462.CrossRefGoogle Scholar
Fangman, W. L. & Neidhardt, F. C. (1964). Demonstration of an altered aminoacyl ribonucleic acid synthetase in a mutant of Escherichia coli. Journal of Biological Chemistry 239, 18391843.CrossRefGoogle Scholar
Gollub, E. & Sprinson, D. B. (1969). A regulatory mutation in tyrosine biosynthesis. Biochemical and Biophysical Research Communications 35, 389395.CrossRefGoogle ScholarPubMed
Hannan, M. A. (1972). Mutation in Schizophyllum commune for resistance to p-fluorophenylalanine. Experientia 28, 12421243.CrossRefGoogle ScholarPubMed
Horowitz, N. H., Fling, M., Feldman, H. H., Pall, M. L. & Froehner, S. C. (1970). De-repression of tyrosinase synthesis in Neurospora by amino acid analogs. Developmental Biology 21, 147156.Google Scholar
Im, S. W. K., Davidson, H. & Pittard, J. (1971). Phenylalanine and tyrosine biosynthesis in E. coli K-12: Mutants derepressed for 3-deoxy-arabinoheptulosonic acid 7-phosphate synthetase (phe), 3-deoxy-D-arabinoheptulosonic acid 7-phosphate (tyr), chorismate mutase T-prephenate dehydrogenase and transminase A. Journal of Bacteriology 108, 400409.CrossRefGoogle Scholar
Im, S. W. K. & Pittard, J. (1971). Phenylalanine biosynthesis in Escherichia coli K-12: Mutant derepressed for chorismate mutase P-prephenate dehydratase. Journal of Bacteriology 106, 784790.CrossRefGoogle ScholarPubMed
Jacobson, E. S. & Metzenberg, R. L. (1967). A new gene which affects uptake of neutral and acidic amino acids in Neurospora crassa. Biochimica et biophysica acta 156, 140147.Google Scholar
Kinsey, J. A. & Stadler, D. R. (1969). Interaction between analogue resistance and amino acid auxotrophy in Neurospora. Journal of Bacteriology 97, 11141117.Google Scholar
Mackintosh, M. E. & Pritchard, R. H. (1963). The production and replica plating of micro-colonies of Aspergillus nidulans. Genetical Research 4, 320322.CrossRefGoogle Scholar
Martinelli, S. D. & Clutterbuck, A. J. (1971). A quantitative survey of conidiation mutant in Aspergillus nidulans. Journal of General Microbiology 69, 261268.Google Scholar
McCully, K. S. & Forbes, E. (1965). The use of p-fluorophenylalanine with ‘Master strains’ of Aspergillus nidulans for assigning genes to linkage groups. Genetical Research 6, 352359.CrossRefGoogle ScholarPubMed
Morpurgo, G. (1962). Resistance to P-fluorophenylalanine. Aspergillus News Letter 2, 11.Google Scholar
Moyed, H. S. (1960). False feed-back inhibition of tryptophan biosynthesis by 5-methyltryptophan. Journal of Biological Chemistry 235, 10981101.Google Scholar
Pontecorvo, G. & Käfer, E. (1958). Genetic analysis based on mitotic recombination. Advances in Genetics 9, 71104.CrossRefGoogle ScholarPubMed
Pontecorvo, G., Roper, J. A., Hemmons, L. M., MacDonald, K. D. & Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Advances in Genetics 5, 141238.Google Scholar
Previc, E. & Binkley, S. (1964). Repression and inhibition of 3-deoxy-D-arabinoheptulosonic-7-phosphate synthetase by p-fluorophenylalanine in Escherichia coli. Biochemical and Biophysical Research Communications 16, 162166.CrossRefGoogle Scholar
Richmond, M. H. (1962). The effect of amino acid analogues on growth and protein synthesis in microorganism. Bacteriological Reviews 26, 398420.Google Scholar
Richmond, M. H. (1965). The enzymic basis of specific antibacterial action by structural analogues. Biological Reviews 40, 93128.Google Scholar
Roper, J. A. (1952). Production of heterozygous diploids in filamentous fungi. Experientia 8, 1415.Google Scholar
Sinha, U. (1967). Aromatic amino acid biosynthesis and para-fluorophenylalanine resistance in Aspergillus nidulans. Genetical Research 10, 261272.Google Scholar
Sinha, U. (1969). Genetic control of the uptake of amino acids in Aspergillus nidulans. Genetics 62, 495505.Google Scholar
Sinha, U. (1970 a). Competition between leucine and phenylalanine and its relation to p- fluorophenylalanine resistant mutant in Aspergillus nidulans. Archives für Mikrobiology 72, 308317.Google Scholar
Sinha, U. (1970 b). Cascade regulation in Aspergillus nidulans. In Symposium on Macromolecules in Storage and Transfer of Biological Information, pp. 367371. Department of Atomic Energy, Government of India, Bombay.Google Scholar
Sinha, U. (1972). Studies with P-fluorophenylalanine resistant mutants of Aspergillus nidulans. Beiträge zur Biology Pflanzen 48, 171180.Google Scholar
Stadler, D. R. (1966). Genetic control of the uptake of amino acids in Neurospora. Genetics 54, 677685.Google Scholar
Umbarger, H. E. (1971). Metabolite analogs as genetic and biochemical probes. Advances in Genetics 16, 119140.CrossRefGoogle ScholarPubMed
Verma, S. & Sinha, U. (1973). Inhibition of growth by amino acid analogues in Aspergillus nidulans. Beiträge zur Biology Pflanzen 49, 4758.Google Scholar
Warr, J. R. & Roper, J. A. (1965). Resistance to various inhibitors in Aspergillus nidulans. Journal of General Microbiology 40, 273281.CrossRefGoogle ScholarPubMed
Wolfinbarger, L. Jr & Debusk, A. G. (1971). Molecular transport. I. In vivo studies of transport mutants of Neurospora crassa with altered amino acid competition pattern. Archives Biochemistry Biophysics 144, 503511.Google Scholar