Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T17:00:05.464Z Has data issue: false hasContentIssue false

Nuclear and cytoplasmic cross-resistance and correlated sensitivity to DNA intercalating drugs in a petite-negative yeast

Published online by Cambridge University Press:  14 April 2009

Esteban Celis
Affiliation:
Departamento de Bioquímica, Facultad de Medicina and Departamento de Biología Experimental, Instituto de BiologíaUniversidad Nacional Autónoma de México, México 20, D.F., México
Jaime Mas
Affiliation:
Departamento de Bioquímica, Facultad de Medicina and Departamento de Biología Experimental, Instituto de BiologíaUniversidad Nacional Autónoma de México, México 20, D.F., México
Aurora Brunner
Affiliation:
Departamento de Bioquímica, Facultad de Medicina and Departamento de Biología Experimental, Instituto de BiologíaUniversidad Nacional Autónoma de México, México 20, D.F., México
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ethidium bromide and acriflavin-resistant mutants of petite-negative yeast Kluyveromyces lactis were prepared. One kind of nuclear mutation (EBR1) gave resistance to ethidium bromide and correlated sensitivity towards acriflavin. Another nuclear mutation (EBR2) did not affect ‘natural’ resistance of this yeast towards 15 μM acriflavin. Both nuclear mutations mapped at different loci, suggesting lack of linkage. Cytoplasmic mutants resistant to these two drugs were unstable when grown in complete media with dextrose, reverting to a wild-type resistance genotype. When grown in glycerol-containing media these mutants maintained their cytoplasmic drug-resistance conferring factors.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Birky, C. W. Jr (1973). On the origin of mitochondrial mutants. Evidence for intracellular selection of mitochondria in the origin of antibiotic-resistant cells in yeast. Genetics 74, 421- 432.CrossRefGoogle ScholarPubMed
Bleeg, H. S., Leth Bak, A., Christiansen, C., Smith, K. E. & Stenderup, A. (1972). Mitochondrial DNA and glucose repression in yeast. Biochemical and Biophysical Research Communications 47, 524530.CrossRefGoogle ScholarPubMed
Brunner, A., Mas, J., Celis, E. & Mattoon, J. R. (1973). Cytoplasmic and nuclear inheritance of resistance to alkylguanidines and ethidium bromide in a petite-negative yeast. Biochemical and Biophysical Research Communications 53, 638644.CrossRefGoogle Scholar
Bulder, C. J. E. A. (1964). Induction of petite mutations and inhibition of synthesis of respiratory enzymes in various yeasts. Antonie van Leeuwenhoek Journal of Microbiology and Serology 30, 19.CrossRefGoogle ScholarPubMed
Ephrussi, B. & Hottinguer, H. (1950). Direct demonstration of the mutagenic action of euflavin on Baker's yeast. Nature (London) 166, 956.CrossRefGoogle ScholarPubMed
Fukuhara, H. & Kuhawa, C. (1970). Selective inhibition of the in vivo transcription of mitochondrial DNA by ethidium bromide and by acriflavin. Biochemical and Biophysical Research Communications 41, 10021008.CrossRefGoogle ScholarPubMed
Luha, A., Sarcoe, E. L. & Whittaker, A. P. (1971). Biosynthesis of yeast mitochondria. Drug effects on the petite-negative yeast Kluyveromyces lactis. Biochemical and Biophysical Research Communications 44, 396402.CrossRefGoogle ScholarPubMed
Marcovich, H. (1951). Action de l'acriflavine sur les levures. VIII. Determination du composant actif et étude de l'euflavine. Annales de l'lnstitut Pasteur 81, 452468.Google Scholar
Matile, P. H., Moor, H. & Robinow, D. F. (1969). Yeast cytology. In The Yeasts, vol. 1 (ed. Rose, H. A. and Harrison, J. S.), pp. 263267. Academic Press.Google Scholar
Mortimer, R. K. & Hawthorne, D. C. (1969). Yeast genetics. In The Yeasts, vol. 1 (ed. Rose, H. A. and Harrison, J. S.), pp. 391416. Academic Press.Google Scholar
Perlman, P. S. & Mahler, H. R. (1971). Molecular consequences of ethidium bromide muta-genesis. Nature (London) New Biology 231, 1216.Google Scholar
Rank, G. H. & Bech-Hansen, N. T. (1973). Single nuclear gene inherited cross resistance and collateral sensitivity to 17 inhibitors of mitochondrial function in S. cerevisiae. Molecular & General Genetics 126, 93102.CrossRefGoogle ScholarPubMed
Shannon, C., Enns, R., Wheelis, L., Burchiel, K. & Criddle, R. S. (1973). Alterations in mitochondrial adenosine triphosphatase activity resulting from mutation of mitochondrial deoxyribonucleic acid. Journal of Bacteriology 248, 30043011.Google ScholarPubMed
Sherman, F. (1964). Mutants of yeast deficient in cytochrome c. Genetics 49, 3948.CrossRefGoogle ScholarPubMed
Slonimski, P., Perrodin, G. & Croft, J. (1968). Ethidium bromide induced mutation of yeast mitochondria: complete transformation of cells into respiratory deficient non-chromosomal petites. Biochemical and Biophysical Research Communications 30, 232239.CrossRefGoogle ScholarPubMed