Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T20:21:58.093Z Has data issue: false hasContentIssue false

Mutant with heat-sensitive capacity for phagocytosis in tetrahymena: isolation and genetic characterization

Published online by Cambridge University Press:  14 April 2009

Gary B. Silberstein
Affiliation:
Section of Biochemistry and Molecular Biology, Department of Biological Sciences, University of California at Santa Barbara, Santa Barbara, California 93106, U.S.A.
Eduardo Orias
Affiliation:
Section of Biochemistry and Molecular Biology, Department of Biological Sciences, University of California at Santa Barbara, Santa Barbara, California 93106, U.S.A.
Nina A. Pollock
Affiliation:
Section of Biochemistry and Molecular Biology, Department of Biological Sciences, University of California at Santa Barbara, Santa Barbara, California 93106, U.S.A.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A mutant of Tetrahymena with heat-sensitive phagocytosis was obtained using a tantalum-particle enrichment procedure. The mutant phenotype is most likely determined by a somatic (macronuclear) mutation(s). The inability of the mutant to sustain cell division and to phagocytize at 37 °C are most likely determined by the same mutation. The phenotype of the mutant is stably inherited under vegetative propagation at 30 °C. At 37 °C, the mutation affects the development of the oral apparatus, the phagocytotic organelle. This mutant has proven useful for the study of cellular functions related to phagocytosis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Bruns, P. J. & Brussard, T. B. (1975). Positive selection for mating with functional hetero-karyons in Tetrahymena pyriformis. Genetics 78, 831.CrossRefGoogle Scholar
Byrne, B. C. & Bruns, P. J. (1974). Selection of macronuclear and germ line drug-resistance mutations in Tetrahymena. Genetics 77 (suppl), 7.Google Scholar
Gavin, R. H. (1974). The oral apparatus of Tetrahymena pyriformis, mating type 1, variety 1. I. Solubilization and electrophoretic separation of oral apparatus proteins. Experimental Cell Research 85, 212.CrossRefGoogle ScholarPubMed
McCoy, J. W. (1973). A temperature-sensitive mutant in Tetrahymena pyriformis, syngen 1. Genetics 74, 107.CrossRefGoogle ScholarPubMed
Nanney, D. L. (1959). Vegetative mutants and clonal senility in Tetrahymena. Journal of Protozoology 6, 171.CrossRefGoogle Scholar
Nanney, D. L. (1964). Macronuclear differentiation in subnuclear assortment in ciliates. In Role of the Chromosomes in Development (ed. Locke, M.), p. 253.CrossRefGoogle Scholar
Nilsson, J. R. & Williams, N. E. (1966). An electron-microscope study of the oral apparatus of Tetrahymena pyriformis. Comptes Rendus des Travaux du Laboratoire Carlsberg 35, 119.Google ScholarPubMed
Orias, E. & Bruns, P. J. (1974). Induction and isolation of mutants in Tetrahymena. In. Methods in Cell Biology (ed. Prescott, D. M.), p. 10 (in the Press).Google Scholar
Orias, E. & Flacks, M. (1973). Use of genomic exclusion to isolate heat-sensitive mutants in Tetrahymena. Genetics 73, 543.CrossRefGoogle ScholarPubMed
Orias, E. & Flacks, M. (1975). Macronuclear genetics of Tetrahymena. I. Random distribution of macronuclear gene copies in syngen 1. Genetics 79, 187.CrossRefGoogle ScholarPubMed
Orias, E. & Newby, C. J. (1975). Macronuclear genetics of Tetrahymena. II. Macronuclear location of somatic mutations to cycloheximide resistance in T. pyriformis, syngen 1. Genetics (in the Press).Google Scholar
Orias, E. & Pollock, N. A. (1975). Heat sensitive development of the phagocytotic organelle in a Tetrahymena mutant. Experimental Cell Research 90, 345.CrossRefGoogle Scholar
Rasmussen, L. (1973). On the role of food vacuole formation in the uptake of dissolved nutrients of Tetrahymena. Experimental Cell Research 82, 192.CrossRefGoogle ScholarPubMed
Roberts, C. T. Jr & Orias, E. (1973 a). Cytoplasmic inheritance of chloramphenicol resistance in Tetrahymena. Genetics 73, 259.CrossRefGoogle ScholarPubMed
Roberts, C. T. Jr & Orias, E. (1973 b). A cycloheximide-resistant mutant of Tetrahymena pyriformis. Experimental Cell Research 81, 312.CrossRefGoogle ScholarPubMed
Simon, E. M. & Flacks, M. (1974). Preparation, storage and recovery of free-living, non-encysting ciliated protozoa. In Proceedings of Conference on the Cryogenic Preservation of Cell Cultures (in the Press).Google Scholar
Sonneborn, T. M. (1974). Genetics of Tetrahymena pyriformia. In Handbook of Genetics (ed. King, R. C.), 2, 433.CrossRefGoogle Scholar
Williams, N. E. & Zeuthen, E. (1966). The development of oral fibers in relation to oral morphogenesis and induced division synchrony in Tetrahymena. Comptes Rendus des Travaux du Laboratoire Carlsberg 35, 101.Google ScholarPubMed
Wolfe, J. (1973). Differential density labeling and gradient centrifugation of Tetrahymena. Experimental Cell Research 77, 232.CrossRefGoogle ScholarPubMed