Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T16:31:01.708Z Has data issue: false hasContentIssue false

Linkage analysis of the gene encoding precursor protein of diapause hormone and pheromone biosynthesis-activating neuropeptide in the silkmoth, Bombyx mori

Published online by Cambridge University Press:  14 April 2009

Waraporn Pinyarat
Affiliation:
Department of Agricultural ChemistryUniversity of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan Department of Agrobiology, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan
Toru Shimada*
Affiliation:
Department of Agrobiology, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan
Wei-Hua Xu
Affiliation:
School of AgricultureNagoya University, Chikusa-ku, Nagoya 464-01, Japan
Yukihiro Sato
Affiliation:
Radioisotope Research Center, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan
Okitsugu Yamashita
Affiliation:
School of AgricultureNagoya University, Chikusa-ku, Nagoya 464-01, Japan
Masahiko Kobayashi
Affiliation:
Department of Agrobiology, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan
*
* To whom all correspondence should be addressed
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have determined the map position of the gene encoding a common precursor protein for diapause hormone and pheromone biosynthesis-activating neuropeptide (the DH-PBAN gene, Dh)in the silkmoth, Bombyx mori. First we compared the structure of introns in the DH-PBAN gene by the polymerase chain reaction, and found that the Dh locus carried three alleles, DhA1, DhA2 and DhB. The DhA1 and DhA2 alleles contained a fourth intron consisting of 740 bp, whereas DhB had a longer fourth intron of 770 bp. DhA1 and DhA2 contained a fifth intron consisting of 940 bp, whereas the fifth intron in DhB was much longer and consisted of 1700 bp. DhA1 was distinguished from DhA2 by an RFLP in the fifth intron after digestion with Rsa I. Linkage analyses using these polymorphisms showed that Dh was linked to the bp gene on chromosome 11, and independent of markers on chromosomes 1, 2, 3, 4, 5, 6, 7 and 13. To determine the map position, we obtained F1 hybrids between the n501 strain (K DhA1) and the w30 strain ( + KDhB), and backcrossed the F1 hybrid to females of the w30 strain. From the segregation of K and Dh in 864 individuals in the next generation, the recombination value was calculated as 25·5 % between K and Dh. Similarly we obtained backcross progeny between the No. 744 strain (BuDhA1) and the w30 strain ( + BuDhB), and calculated the recombination value between Bu and Dh as 30·4% from 487 progeny. Because k and Bu had already been mapped at positions 11–23·2 cM and 11–28·7 cM, respectively, we mapped Dh at 11--2·2 cM. The Dh locus is different from any loci which are known to control diapause, development or growth.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

References

Doira, H. (1983). Linkage maps of Bombyx mori – status quo in 1983. Sericologia 23, 145269.Google Scholar
Doira, H., Fujii, H., Kawaguchi, Y., Kihara, H., & Banno, Y. (1992). Genetical Stocks and Mutations of Bombyx mori: Important Genetic Resources. Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 73 pp.Google Scholar
Harizuka, M. (1947). Genetical and physiological studies on the black pupa of the silkworm. Bulletin of Sericultural Experiment Station 12, 530593.(in Japanese).Google Scholar
Hasegawa, K. (1952). The diapause hormone of the silkworm, Bombyx mori. Nature 179, 13001301.CrossRefGoogle Scholar
Hunt, G. J., & Page, R. E. Jr, (1992). Patterns of inheritance with RAPD molecular markers reveal novel types of polymorphism in the honey bee. Theoretical and Applied Genetics 85, 1520.CrossRefGoogle ScholarPubMed
Imai, K., Kondo, N., Isobe, M., Goto, T., Yamashita, O., & Hasegawa, K. (1982). The neurohormones from the suboesophageal ganglion of Bombyx mori: separation of melanization and reddish-coloration hormone from diapause hormone. Journal of Sericultural Science of Japan 51, 111125.Google Scholar
Imai, K., Konno, T., Nakazawa, Y., Komiya, T., Isobe, M., Koga, K., Goto, T., Yaginuma, T., Sakakibara, K., Hasegawa, K., & Yamashita, O. (1991). Isolation and structure of diapause hormone of the silkworm, Bombyx mori. Proceedings of the Japanese Academy of Science B67, 98101.CrossRefGoogle Scholar
Japanese Society of Sericultural Science (1986). Nomenclature and symbols of the genes in the silkworm, Bombyx mori. Journal of Sericultural Science of Japan 55, 95111.(In Japanese).Google Scholar
Katsumata, F. (1968). Non-maternal inheritance in voltinism, observed in the crossing experiments between Indonesian polyvoltine and Japanese bivoltine race of the silkworm, Bombyx mori. Journal of Sericultural Science of Japan 37, 453461.Google Scholar
Kawano, T., Kataoka, H., Nagasawa, H., Isogai, A., & Suzuki, A. (1992). cDNA cloning and sequence determination of the pheromone biosynthesis activating neuropeptide of the silkworm, Bombyx mori. Biochemical and Biophysical Research Communications 189, 221226.CrossRefGoogle ScholarPubMed
Kitamura, A., Nagasawa, H., Kataoka, H., Inoue, T., Matsumoto, S., Ando, T., & Suzuki, A. (1989). Amino acid sequence of pheromone biosynthesis-activating neuropeptide (PBAN) of the silkworm, Bombyx mori. Biochemical and Biophysical Research Communications 163, 520526.CrossRefGoogle ScholarPubMed
Kitamura, A., Nagasawa, H., Kataoka, H., Ando, T., & Suzuki, A. (1990). Amino acid sequence of pheromone biosynthesis activating neuropeptide-II (PBAN-II) of the silkmoth, Bombyx mori. Agricultural and Biological Chemistry 54, 24952497.Google ScholarPubMed
Morohoshi, S. (1957). Physiological Studies on Moltinism and Voltinism in Bombyx mori: A New Hormonal Balance Theory on the Growth. Society for the Promotion of Sciences, Tokyo, Japan, 202 pp.Google Scholar
Nagasawa, H. (1992). Neuropeptides of the silkworm, Bombyx mori. Experientia 48, 425430.CrossRefGoogle ScholarPubMed
Nagasawa, H. (1993). Recent advances in insect neuropeptides. Comparative Biochemistry and Physiology [C] 106, 295300.Google ScholarPubMed
Nagasawa, H., Kitamura, A., Inoue, T., Kataoka, H., Matsumoto, S., Arima, R., Ando, T., Uchiyama, M., & Suzuki, A. (1988). Isolation of pheromone biosysthesis activation neuropeptide of the silkworm, Bombyx mori. Agricultural and Biological Chemistry 52, 29852987.Google Scholar
Nagasawa, H., Kuniyoshi, H., Arima, R., Kawano, T., Ando, T., & Suzuki, A. (1994). Structure and activity of Bombyx PBAN. Archives of Insect Biochemistry and Physiology 25, 261270.CrossRefGoogle ScholarPubMed
Nagatomo, Y. (1941). On the sex-dependent expression of the trimolting property. Journal of Sericultural Science of Japan 12, 171183.(in Japanese).Google Scholar
Ninaki, O., Doira, H., & Chikushi, H. (1980). Genetical studies of the ‘dimolting’ mutant in Bombyx mori. Journal of Sericultural Science of Japan 49, 347351.(In Japanese with English summary).Google Scholar
Promboon, A., Shimada, T., Fujiwara, H., & Kobayashi, M. (1995). Linkage map of random amplified polymorphic DNAs (RAPDs) in the silkworm, Bombyx mori. Genetical Research (Cambridge) (in press).Google Scholar
Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd Ed.New York: Cold Spring Harbor Laboratory Press.Google Scholar
Sanger, F., Miklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74, 54635467.CrossRefGoogle ScholarPubMed
Sato, Y., Nakazawa, Y., Menjo, N., Imai, K., Komiya, T., Isobe, M., Koga, K., Goto, T., Yaginuma, T., Sakakibara, K., Hasegwa, K., & Yamashita, O. (1992). A new diapause hormone molecule of the silkworm, Bombyx mori. Proceedings of the Japanese Academy of Science Ser. B 68 (5), 7579.CrossRefGoogle Scholar
Sato, Y., Oguchi, M., Menjo, N., Imai, K., Saito, H., Ikeda, M., Isobe, M., & Yamashita, O. (1993). Precursor polyprotein for multiple neuropeptides secreted from the suboesophageal ganglion of the silkworm Bombyx mori: characterization of the cDNA encoding the diapause hormone precursor and identification of additional peptides. Proceedings of the National Academy of Sciences, USA 90, 32513255.CrossRefGoogle ScholarPubMed
Shimada, T., Hasegawa, T., Matsumoto, K., Agui, N., & Kobayashi, M. (1994). Polymorphism and linkage analysis of the prothoracicotropic hormone gene in the silkmoth, Bombyx mori. Genetical Research (Cambridge) 63, 190195.CrossRefGoogle ScholarPubMed
Shimizu, K., Tanaka, N., & Matsuno, M. (1980). Linkage analysis of a non-molting mutant of Bombyx mori and its application to the stock maintenance. Journal of Sericultural Science of Japan 49, 712.(In Japanese with English summary).Google Scholar
Sonobe, H. (1989). Studies on embryonic diapause in the pnd mutant of the silkworm, Bombyx mori: characterization of protein synthesis during early development. Zoological Science 6, 515521.Google Scholar
Sonobe, H., Maotani, K., & Nakajima, H. (1986). Studies on embryonic diapause in the pnd mutant of the silkworm, Bombyx mori: genetic control of embryogenesis. Journal of Insect Physiology 32, 215220.CrossRefGoogle Scholar
Sonobe, H., & Odake, H. (1986). Studies on embryonic diapause in the pnd mutant of the silkworm, Bombyx mori. V. Identification of a pnd+ gene-specific protein. Wilhelm Roux's Archives of Developmental Biology 195, 229235.CrossRefGoogle Scholar
Yamamoto, T., Gamo, T., & Hirobe, T. (1978). Genetical studies of the pigmented and non-diapausing egg mutant in Bombyx mori. Journal of Sericultural Science of Japan 47, 181185.Google Scholar
Yamashita, O., & Hasegawa, K. (1985). Embryonic diapause. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (ed. Kerkut, G. A., and Gilbert, L. I.), vol. 1, pp. 407434.Google Scholar
Yoshitake, N., & Hashiguchi, T. (1969). On the diapause of Indonesian polyvoltine silkworm, Bombyx mori L. Japanese Journal of Applied Entomology and Zoology 13, 206207.(In Japanese).CrossRefGoogle Scholar
Xu, W.-H., Sato, Y., Ikeda, M., & Yamashita, O. (1994). Molecular characterization of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis-activating neuropeptide of the silkworm, Bombyx mori and its distribution in some insects. Biochimica et Biophysica Acta (in press).Google Scholar