Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T11:53:27.778Z Has data issue: false hasContentIssue false

Efficient curing of an Escherichia coli F-prime plasmid by phenothiazines

Published online by Cambridge University Press:  14 April 2009

Y. Mándi
Affiliation:
Institute of Microbiology, University Medical School, Szeged, Hungary
J. Molnár
Affiliation:
Institute of Microbiology, University Medical School, Szeged, Hungary
I. B. Holland
Affiliation:
Department of Genetics, University of Leicester, Leicester, England
I. Béládi
Affiliation:
Institute of Microbiology, University Medical School, Szeged, Hungary
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Chlorpromazine and several other phenothiazines at sub-bacteriocidal concentrations were found to cure an Escherichia coli F′ lac+ strain of its plasmid efficiently. Curing was most efficient at high pH and in complex medium when 70% or more of the bacteria were plasmid-free after 24 h growth of cultures in the presence of the drug.

Type
Short paper
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Alföldi, L., Rasko, L. & Kerekes, E. (1968). l-serine deaminase of E. coli. Journal of Bacteriology 96, 15121518.CrossRefGoogle Scholar
Bourdon, J. L. (1961). Contribution à l'étude des propriétés antibiotiques de la chlorpromazine ou 4560 RP. Annales de I'Institut Pasteur 101, 876886.Google Scholar
Clement-Courmier, Y. S., Kebabim, J. W., Petzold, G. L. & Greengard, P. (1974). Dopamine sensitive adenylate cyclase in mammalian brain. A possible site of action of antipsychotic drugs. Proceedings of the National Academy of Science, U.S.A. 71, 11131117.CrossRefGoogle Scholar
Clowes, R. C. & Hayes, W. (1968). Experiments in Microbial Genetics. Oxford: Blaokwell Scientific Publications.Google Scholar
De Court, P., Gastal, R. & Grenet, R. (1953). Etude de l'action narcobiotique sur les germes microbiens. Comptes Rendu de I'Academie des Sciences (Paris) 237, 11091111.Google Scholar
Feinberg, A. P. & Snyder, S. H. (1975). Phenothiazine drugs: structure-activity relationships explained by a conformation that mimics dopamine. Proceedings of the National Academy of Science of the U.S.A. 72, 18991903.CrossRefGoogle ScholarPubMed
Hirota, Y. (1960). Effect of acridine dyes on mating type factors in E. coli. Proceedings of the National Academy of Science of the U.S.A. 46, 5764.CrossRefGoogle Scholar
Iyer, R. & Holland, I. B. (1975). Loss of the major outer membrane protein in Escherichia coli B/r bearing the R plasmid RM 98. Proceedings of the Society for General Microbiology (in the Press).Google Scholar
Levy, S. B., McMurray, L. & Palmer, E. (1974). R factor proteins synthesised in Escherichia coli minicells: membrane-associated R factor proteins. Journal of Bacteriology 120, 14641471.Google Scholar
Miller, R. J., Horn, A. S. & Iverson, L. L. (1974). The action of neuroleptic drugs on dopamine stimulated adenosine cyclic 3′,5′-monophosphate production in rat neostriatum and limbic forebrain. Molecular Pharmacology 10, 759766.Google Scholar
Molnár, J., Király, J. & Mándi, Y. (1975). Antibacterial action and R-factor inhibiting activity of chlorpromazine. Experientia 31, 444446.Google Scholar
Schreiber, J. P. & Danne, M. P. (1974). Fluorescence of complexes of acridine dye with synthetic polydeoxyribonucleotides: A physical model of frameshift mutation. Journal of Molecular Biology 83, 487501.Google Scholar