Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T11:03:08.980Z Has data issue: false hasContentIssue false

The control of mutational instability by a new mutator gene of Drosophila melanogaster*

Published online by Cambridge University Press:  14 April 2009

R. C. Woodruff
Affiliation:
Department of Genetics, University of Cambridge, Cambridge CB4 1XH, England
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The isolation and genetic characterization of a new mutator gene, Mutator-forked3N (Mu-f3N), of Drosophila melanogaster are described. This mutator gene is unique in that it seems to increase specifically the reversion frequency of the unstable mutant forked3N (f3N, 1–56.7), since the frequency of spontaneous sex-linked recessive lethals in males and females and the frequency of reverse mutations at eight additional X-linked alleles were unaffected by Mu-f3N. The mutator is a dominant gene that has been mapped to the region between f3N (1–56.7) and Beadex-2 (Bx2, 1–59.4) in the X chromosome, and it seems to function only in the ‘ cis’ configuration. The mode of action of Mu-f3N is compared with that of other mutator genes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Abrahamson, S. & Lewis, E. B. (1971). The detection of mutations in Drosophila melanogaster. In Chemical Mutagens Principles and Methods for their Detection, vol. II (ed. Hollaender, A.). New York: Plenum Press.Google Scholar
Altenburg, E. & Browning, L. S. (1962). Evidence for the duplicational origin of reverse mutations at the forked locus in Drosophila. Genetics 47, 938.Google Scholar
Berg, C. (1971). Auxotroph accumulation in deoxyribonucleic acid polymeraseless strains of Escherichia coli K-12. Journal of Bacteriology 106, 797801.CrossRefGoogle ScholarPubMed
Bernstein, H. (1971). Reversion of frameshift mutations stimulated by lesions in early function genes of bacteriophage T4. Journal of Virology 7, 460466.CrossRefGoogle ScholarPubMed
Bernstein, C., Bernstein, H., Mufti, S. & Strom, B. (1972). Stimulation of mutation in phage T4 by lesions in gene 32 and by thymidine imbalance. Mutation Research 16, 113119.CrossRefGoogle ScholarPubMed
Bohme, H. (1967). Genetic instability of an ultraviolet-sensitive mutant of Proteus mirabilis. Biochemical and Biophysical Research Communications 28, 191196.CrossRefGoogle ScholarPubMed
Coukell, M. B. & Yanofsky, C. (1970). Increased frequency of deletions in DNA polymerase mutants of Escherichia coli. Nature, Lond. 228, 633635.CrossRefGoogle ScholarPubMed
Cox, E. C., Degnen, G. E. & Scheppe, M. L. (1972). Mutator gene studies in Escherichia coli: the mut-s gene. Genetics 72, 551567.CrossRefGoogle Scholar
Demerec, M. (1929). Genetic factors stimulating mutability of the miniature-gamma wing character of D. virilis. Proceedings of the National Academy of Sciences, U.S.A. 15, 834838.CrossRefGoogle Scholar
Demerec, M. (1937). Frequency of spontaneous mutations in certain stocks of Drosophila melanogaster. Genetics 22, 469478.CrossRefGoogle ScholarPubMed
Drake, J. W. (1973). Editor. The genetic control of mutation. Genetics 73, Supplement.Google ScholarPubMed
Emerson, R. A. (1929). The frequency of somatic mutation in variegated pericarp of maize. Genetics 14, 488511.CrossRefGoogle ScholarPubMed
Green, M. M. (1957). Reverse mutation in Drosophila and the status of the particulate gene. Genetics 29, 138.Google Scholar
Green, M. M. (1970). The genetics of a mutator gene in Drosophila melanogaster. Mutation Research 10, 353363.CrossRefGoogle ScholarPubMed
Green, M. M. & Lefevre, G. Jr (1972). The cytogenetics of mutator gene-induced X-linked lethals in Drosophila melanogaster. Mutation Research 16, 5964.CrossRefGoogle ScholarPubMed
Gross, J. P., Karamata, D. & Hempstead, P. G. (1968). Temperature-sensitive mutants of B. subtilis defective in DNA synthesis. Cold Spring Harbor Symposia on Quantitative Biology 33, 307312.CrossRefGoogle ScholarPubMed
Hall, R. M. & Brammar, W. J. (1973). Increased spontaneous mutation rates in mutants of E. coli with altered DNA polymerase. III. Molecular and General Genetics 121, 271276.CrossRefGoogle Scholar
Harrison, B. J. & Fincham, J. R. S. (1968). Instability at the pal locus in Antirrhinum majus. 3. A gene controlling mutation frequency. Heredity 23, 6772.CrossRefGoogle Scholar
Hill, R. F. (1970). Location of genes controlling excision repair of UV damage and mutator activity in Escherichia coli WP2. Mutation Research 9, 341344.CrossRefGoogle ScholarPubMed
Ives, P. T. (1945). The genetic structure of American populations of Drosophila melanogaster. Genetics 30, 167196.CrossRefGoogle ScholarPubMed
Ives, P. T. (1950). The importance of mutation rate genes in evolution. Evolution 4, 236252.CrossRefGoogle Scholar
Jyssum, K. (1968). Mutator factor in Neisseria menigitidis associated with increased sensitivity to ultraviolet light and defective transformation. Journal of Bacteriology 96, 165172.CrossRefGoogle Scholar
Keighley, G. & Lewis, E. B. (1950). Drosophila counter. Journal of Heredity 50, 7577.CrossRefGoogle Scholar
Kirchner, C. E. J. & Rudden, M. J. (1966). Location of a mutator gene in Salmonella typhimurium by contransduction. Journal of Bacteriology 92, 14531456.CrossRefGoogle Scholar
Koch, B. B. & Drake, J. W. (1973). Ligase-defective bacteriophage T4. I. Effects on mutation rates. Journal of Virology 11, 3540.CrossRefGoogle ScholarPubMed
Lefevre, G. Jr & Green, M. M. (1959). Reverse mutation studies on the forked locus in Drosophila melanogaster. Genetics 44, 769776.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Institution of Washington, publication no. 672.Google Scholar
Mampell, K. (1943). High mutation frequency in Drosophila pseudoobscura, race B. Proceedings of the National Academy of Sciences, U.S.A. 29, 137149.CrossRefGoogle ScholarPubMed
McClintock, B. (1965). The control of gene action in maize. Brookhaven Symposia in Biology 18, 162184.Google Scholar
Merriam, J. R. (1968). Drosophila melanogaster: New mutants. Report by John B. Merriam, Drosophila Information Service 43, 64.Google Scholar
Neel, J. V. (1942). A study of a case of high mutation rate in Drosophila melanogaster. Genetics 27, 519536.CrossRefGoogle ScholarPubMed
Rhoades, M. M. (1941). The genetic control of mutability in maize. Cold Spring Harbor Symposia on Quantitative Biology 9, 138144.CrossRefGoogle Scholar
Slatko, B. E. & Hiraizumi, Y. (1973). Mutation induction in the male recombination strains of Drosophila melanogaster. Genetics 75, 643649.CrossRefGoogle ScholarPubMed
Speyer, J. F. (1965). Mutagenic DNA polymerase. Biochemical and Biophysical Research Communications 21, 68.CrossRefGoogle ScholarPubMed
Stevens, W. L. (1942). Accuracy of mutation rates. Journal of Genetics 43, 301307.CrossRefGoogle Scholar
von Borstel, R. C., Cain, K. T. & Steinberg, C. M. (1971). Inheritance of spontaneous mutability in yeast. Genetics 69, 1727.CrossRefGoogle ScholarPubMed
Woodruff, R. C. (1973). A new sex-linked mutator gene in Drosophila melanogaster. Drosophila Information Service 49, 58.Google Scholar
Woodruff, R. C., Bowman, J. T. & Simmons, J. B. (1970). Some parameters of the reversion of the mutant forked-3N in Drosophila melanogaster. Genetics 64, s66–s67.Google Scholar
Woodruff, R. C., Bowman, J. T. & Simmons, J. B. (1972). Sex influenced reversion of the mutationally unstable mutant forked-3N of Drosophila melanogaster. Mutation Research 15, 8689.CrossRefGoogle ScholarPubMed