Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T14:47:04.892Z Has data issue: false hasContentIssue false

A non-destructive, simple and accurate model for estimating the individual leaf area of kiwi (Actinidia deliciosa)

Published online by Cambridge University Press:  01 June 2007

Emilio Mendoza-de Gyves
Affiliation:
Dipartimento di Produzione Vegetale, Università della Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
Youssef Rouphael
Affiliation:
Dipartimento di Produzione Vegetale, Università della Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
Valerio Cristofori
Affiliation:
Dipartimento di Produzione Vegetale, Università della Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
Farida Rosana Mira
Affiliation:
Dipartimento di Produzione Vegetale, Università della Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
Get access

Abstract

Introduction. Simple, accurate and non-destructive models determining leaf area of plants are important in many experimental comparisons. Determining the individual leaf area (La) of A. deliciosa (A. Chev.) vines involves the measurements of leaf parameters such as leaf length (Ll) and width (Lw), or some combinations of these parameters. Materials and methods. A 2-year investigation was carried out in Italy during 2005 (calibration experiments) and 2006 (validation experiment) under open field conditions. It aimed at comparing existing predictive leaf area models for A. deliciosa leaves using non-destructive measurements, and assessing the accuracy of the optimum model selected using an independent dataset. Results and discussion. Regression analyses of (La) vs. (Ll) and (Lw) revealed several models that could be used for estimating the area of individual A. deliciosa leaves. A linear model with (Ll × Lw) as the independent variable [La = 0.82 (Ll × Lw) – 0.28] provided the most accurate estimate (R2 = 0.985, mean standard error = 25) of A. deliciosa leaf area. Validation of the model with (Ll) and (Lw) measured on leaves from other orchards grown in different locations showed that the correlation between calculated and measured areas was very high. Conclusions. With the model selected, agronomists and physiologists can estimate accurately and reliably the leaf area of A. deliciosa plants without the use of expensive instruments, e.g., a leaf area planimeter or digital camera with image measurement software.

Type
Research Article
Copyright
© CIRAD, EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

De Swart, E.A.M., Groenwold, R., Kanne, H.J., Stam, P., Marcelis, L.F.M., Voorrips, R.E., Non-destructive estimation of leaf area for different plant ages and accessions of Capsicum annuum L., J. Hortic. Sci. Biotechnol. 79 (2004) 764770. CrossRef
Williams, L.E., Growth of ‘Thompson seedless’ grapevines. I. Leaf area development and dry weight distribution, J. Am. Soc. Hortic. Sci. 112 (1987) 325330.
Bhatt, M., Chanda, S.V., Prediction of leaf area in Phaseolus vulgaris by non-destructive method, Bulg. J. Plant Physiol. 29 (2003) 96100.
Olivera, M., Santos, M., A semi-empirical method to estimate canopy leaf area of vineyards, Am. J. Enol. Viticult. 46 (1995) 389391.
Williams, L. III, Martinson, T.E., Nondestructive leaf area estimation of ‘Niagara’ and ‘DeChaunac’ grapevines, Sci. Hortic. 98 (2003) 493498. CrossRef
Daughtry, C., Direct measurements of canopy structure, Remote Sens. Rev. 5 (1990) 4560. CrossRef
Nyakwende, E., Paull, C.J., Atherton, J.G., Non-destructive determination of leaf area in tomato plants using image processing, J. Hortic. Sci. 72 (1997) 255262. CrossRef
Villegas, C.D., Bautista, A.T., Cotejo, F.R. Jr., Accurate and rapid techniques for leaf area measurement in cassava and sweet potato, Radix 3 (1981) 10.
Beerling, D.J., Fry, J.C., A comparison of the accuracy, variability and speed of five different methods for estimating leaf area, Ann. Bot. 65 (1990) 483488. CrossRef
Uzun, S., Çelik, H., Leaf area prediction models for different horticultural plants, Turk. J. Agric. For. 23 (1999) 645650.
Demirsoy, H., Demirsoy, L., A validated leaf area prediction model for some cherry cultivars in Turkey, Pak. J. Bot. 35 (2003) 361367.
Demirsoy, H., Demirsoy, L., Uzun, S., Ersoy, B., Non-destructive leaf area estimation in peach, Eur. J. Hortic. Sci. 69 (2004) 144146.
Dent J.B., Blackie M.J., Systems simulation in agriculture, Appl. Sci. Publ., London, UK, 1979, 238 p.
Whithworth, J.L., Mauromoustakos, A., Smith, M.V., Non-destructive method for estimation of leaf area in pecan, HortScience 27 (1992) 851.
Demirsoy, H., Demirsoy, L., Ozturk, A., Improved model for the non-destructive estimation of strawberry, Fruits 60 (2005) 6973. CrossRef
Rouphael, Y., Rivera, C.M., Cardarelli, M., Fanasca, S., Colla, G., Leaf area estimation from linear measurements in zucchini plants of different ages, J. Hortic. Sci. Biotechnol. 81 (2006) 238241. CrossRef
Robbins, N.S., Pharr, D.M., Leaf area prediction models for cucumber from linear measurements, HortScience 22 (1987) 12641266.
Panta, G.R., NeSmith, D.S., A model for estimating area of muskmelon leaves, HortScience 30 (1995) 624625.Un modelo no destructivo, simple y preciso para evaluar la superficie de una hoja de kiwi (Actinidia deliciosa).