Published online by Cambridge University Press: 28 January 2021
Let A be a finite set with , let n be a positive integer, and let $A^n$ denote the discrete $n\text {-dimensional}$ hypercube (that is, $A^n$ is the Cartesian product of n many copies of A). Given a family $\langle D_t:t\in A^n\rangle $ of measurable events in a probability space (a stochastic process), what structural information can be obtained assuming that the events $\langle D_t:t\in A^n\rangle $ are not behaving as if they were independent? We obtain an answer to this problem (in a strong quantitative sense) subject to a mild ‘stationarity’ condition. Our result has a number of combinatorial consequences, including a new (and the most informative so far) proof of the density Hales-Jewett theorem.