Published online by Cambridge University Press: 12 January 2010
The ability to externally regulate the expression or function of a gene product has proven to be a powerful tool in the study of proteins and disease in vitro, and more recently in transgenic animal models. The transfer of these technologies to regulate a therapeutic, adoptively transferred gene product in a clinical setting may provide a means to exert additional control over a large variety of therapies for many diseases, leading to increased safety and effectiveness. This could be applied to any biological therapy, including gene therapy, viral therapies, cellular therapies (such as immune cell therapies, stem cell therapies and bone marrow transplant), some vaccines and even organ transplant. A variety of systems have been used in a basic research setting to conditionally regulate the function of a protein, including control of transcription and mRNA stability, and the use of protein inhibitors. However, most of these have disadvantages for medical use, where a simple, specific, tunable, reversible and broadly applicable means to regulate protein function is needed. Recent advances in controlling the stability or function of proteins through the interaction of small-molecule effectors and fusion domains on the protein have raised the possibility that direct and highly specific external control of therapeutic protein function in humans will be feasible.
The Tom Wandless laboratory at Stanford University, USA (which pioneered the use of degradation domains):