Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T10:51:21.492Z Has data issue: false hasContentIssue false

RESPONSES OF EUCALYPTUS CAMALDULENSIS SPROUTS TO SHADE: AN EVALUATION OF CANOPY PLASTICITY

Published online by Cambridge University Press:  16 June 2015

CIRO ABBUD RIGHI*
Affiliation:
Department of Forest Science, University of São Paulo, ESALQ, Av. Pádua Dias, 11, P.O. Box. 09, 13418-900 Piracicaba, SP - Brazil
VINCENT COUDERC
Affiliation:
Montpellier SupAgro, Centre international d’études supérieures en sciences agronomiques, 2 Place Pierre Viala 34000 Montpellier, France
CARLOS RODRIGUES PEREIRA
Affiliation:
Escola de Engenharia. Rua Passo da Pátria, 156, Department of Engenharia Agrícola e do Meio Ambiente, Universidade Federal Fluminense, Bloco D. Sala 236, 24210-240, Niteroi, RJ - Brazil
HILTON THADEU ZARATE COUTO
Affiliation:
Department of Forest Science, University of São Paulo, ESALQ, Av. Pádua Dias, 11, P.O. Box. 09, 13418-900 Piracicaba, SP - Brazil
*
††Corresponding author. Email: [email protected]

Summary

Eucalyptus spp. is the main tree used in cellulose production worldwide, cultivated mostly in extensive monocrop plantations. However, due to concerns on environmental impacts, fear on decrease of food production related to the size of cultivated area, its location near human settlements with few jobs generation, eucalypt cultivation is no longer encouraged in many places. At the same time, large plantations hold the opportunity to integrate eucalypt into agroforestry systems (AFS) in a variety of production systems with many social, economical and environmental advantages. In this study we studied canopy modifications of E. camaldulensis sprouts under different degrees of shade. The plants were located on a gradient of available solar irradiation ranging from 51 to 94%. E. camaldulensis showed canopy plasticity with modified radiation interception patterns under diverse irradiations. Most of these variations were of small amplitude with some important variables remaining almost unchanged (leaf density, canopy percentage, tree, trunk and canopy height) or increasing only slightly (leaf area index and canopy opening). The main changes presented by E. camaldulensis, with a steep increase towards full sun, were: foliage area, canopy surface, canopy volume and area of canopy projection. In order to design appropriate agroforestry systems with young eucalypt growing under the shade of other crops, it is necessary to determine at which point the observed variable changes can support reasonable production.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ABRAF - Associação Brasileira de Produtores de Florestas Plantadas. (2012). Statistical Yearbook of ABRAF - base year 2011. Available at: http://www.abraflor.org.br/ Access in 24th April, 2013.Google Scholar
Alvim, P. T. and Kozlowski, T. T. (1977). Ecophysiology of Tropical Crops, New York: Academic Press.Google Scholar
Baggio, A. J., Caramori, P. H., Androcioli, F. A. and Montoya, L. (1997). Productivity of southern Brazilian coffee plantations shaded by different stocking of Grevillea robusta . Agroforestry Systems 37 (2):111120.CrossRefGoogle Scholar
Bernardes, M. S., Castro, P. R. C. and Martins, A. N. (1996). Formação da copa e resistência de árvores ao vento: modelo de seringueira. Piracicaba. FEALQ, 88.Google Scholar
Bernardes, M. S., Goudriaan, J., Dourado-Neto, D. and Câmara, G. M. de S (1998). Tree-crop interactions in agroforestry system of rubber with soybean and maize. Cong European Soc for Agr, Slovak Republic, Short Communications. II:125–126.Google Scholar
Bernardes, M. S., Pinto, L. F. G. and Righi, C. A. (2009). Interações biofísicas em sistemas agroflorestais. In Alternativa agroflorestal na Amazônia em transformação, 453476 (Ed. Porro, R.) 1st ed. Brasília/DF, Brazil: Embrapa Informação Tecnológica.Google Scholar
Binkley, D., Campo, O. C., Gspaltl, M. and Forrester, D. I. (2013). Light absorption and use efficiency in forests: why patterns differ for trees and stands. Forest Ecology and Management 288: 513.CrossRefGoogle Scholar
Binkley, D., Stape, J. L., Bauerle, W. L. and Ryan, M. G. (2010). Explaining growth of individual trees: light interception and efficiency of light use by Eucalyptus at four sites in Brazil. Forest Ecology and Management 259:17041713.CrossRefGoogle Scholar
Campbell, G. S. and Norman, J. M. (1989). The description and measurement of plant canopy structure. In Plant Canopies: Their Growth, Form and Function, (Eds Russel, G., Marshall, B. and Jarvis, P. G.)., Cambridge, UK: Cambridge University Press.Google Scholar
Cannel, M. G. R. (1976). Crop physiological aspects of coffee bean yield. Kenya Coffee 41 (484):245253.Google Scholar
Chaves, R. A., Reis, M. G. F., Reis, G. G., Pezzopane, J. E. M., Xavier, A. and Monte, M. A. (2007). Dinâmica de cobertura de dossel de povoamentos de clone de Eucalyptus grandis W. Hill ex-Maiden submetidos a desrama artificial e desbaste. Rev Árvore 31 (6):989998.CrossRefGoogle Scholar
Couto, L., Binkley, D., Betters, D. R. and Moniz, C. V. D. (1994). Intercropping eucalypts with maize in Minas Gerais, Brazil. Agroforestry Systems 26:147156.CrossRefGoogle Scholar
Couto, L. and Dubè, F. (2001). The status and practice of forestry in Brazil at the beginning of the 21st century: A review. The Forestry Chronicle 77 (5):817830.CrossRefGoogle Scholar
Doley, D. (1979). Effects of shade on xylem development in seedlings of Eucalyptus-grandis hill ex maiden. New Phytologist 82 (2):545555.CrossRefGoogle Scholar
Dubè, F., Couto, L., Silva, M. L., Leite, H. G., Garcia, R. and Araujo, G. A. A. (2002). A simulation model for evaluating technical and economic aspects of an industrial eucalyptus-based agroforestry systems in Minas Gerais, Brazil. Agroforestry Systems 55:7380.CrossRefGoogle Scholar
Fang, X., Yuan, J., Wang, G. and Zhao, Z. (2006). Fruit production of shrub, Caragana korshinskii, following above-ground partial shoot removal: mechanisms underlying compensation. Plant Ecology 87:213225.CrossRefGoogle Scholar
Garrity, D. and Mercado, A. (1994). Reforestation through agroforestry: market driven small-holder timber production on the frontier. In Marketing of Multipurpose Tree Products in Asia, 265268 (Eds Raintree, J. B. and Francisco, H. A.) Proc Inter Workshop Baguio City, Philippines, 6–9 Dec. 1993. Bangkok, Thailand: Winrock International.Google Scholar
Gates, D. M. (1965). Heat transfer in plants. Scientific American 213:7684.CrossRefGoogle ScholarPubMed
Goudriaan, J. (1977). Crop Micrometeorology: A Simulation Study. PUDOC, Wageningen, the Netherlands (Simulation Monographs).Google Scholar
Hallé, F. and Oldman, R. A. A. (1970). Essai Sur L’architecture et la Dynamique de Croissance des Arbres Tropicaux. Paris: Masson.Google Scholar
Hubbard, R. M., Ryan, M. G., Stiller, V. and Sperry, J. S. (2001). Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell Environment 24:113121.CrossRefGoogle Scholar
Huxley, P. A. (1999). Tropical Agroforestry. Cambridge. England: Blackwell Science.Google Scholar
Jonckheere, I., Fleck, S., Nackaerts, K., Muysa, B., Coppin, P., Weiss, M. and Baret, F. (2004). Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology 121:1935.CrossRefGoogle Scholar
Jones, H. G. (1994). Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. Cambridge: Cambridge University Press.Google Scholar
Kruschewsky, G. C., Macedo, R. L. G., Venturin, N. and Oliveira, T. K. (2007). Arranjo estrutural e dinâmica de crescimento de Eucalyptus spp. em sistema agrossilvipastoril no cerrado. Cerne 13 (4):360367.Google Scholar
Lavigne, M. B., Little, E. H. and Major, J. E. (2001). Increasing the sink:source balance enhances photosynthetic rate of 1-year-old balsam fir foliage by increasing allocation of mineral nutrients. Tree Physiology 21 (7):417426.CrossRefGoogle ScholarPubMed
Leong, W. (1980). Canopy modification and its effects on growth and yield of Hevea brasiliensis. 283 p. (PhD thesis), Faculty of Agricultural Sciences of Ghent, Belgium.Google Scholar
Linacre, E. T. (1964). A note on feature of leaf and air temperatures. Agricultural Meteorology 1:6672.CrossRefGoogle Scholar
Lunz, A. M. P. and Franke, I. L. (1998). Princípios gerais e planejamento de sistemas agroflorestais. Rio Branco: Embrapa-CPAF/AC (Circular técnica, 22).Google Scholar
Macedo, R. L. G., Do Vale, A. B. and Venturin, N. (2010). Eucalipto em sistemas agroflorestais. Ed. UFLN. Lavras.Google Scholar
Mediavilla, S., Escudero, A. and Heilmeier, H. (2001). Internal leaf anatomy and photosynthetic resource-use efficiency: interspecific and intraspecific comparisons. Tree Physiology 21:251259.CrossRefGoogle ScholarPubMed
Meinzer, F. C. and Grantz, D. A. (1990). Stomatal and hydraulic conductance in growing sugarcane: stomatal adjustment to water transport capacity. Plant Cell Environment 13:383388.CrossRefGoogle Scholar
Monsi, M. and Saeki, T. (1953). Über den lichtfaktor in den planzen-gesell-schaften und seine bedeutung für die Stoffproduktion. Japanese Journal Botany 14:2252.Google Scholar
Monteith, J. L. (1965). Light distribution and photosynthesis in field crops. Annals of Botany 29 (113):1737.CrossRefGoogle Scholar
Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal Applied Ecology 9:747766.CrossRefGoogle Scholar
Ong, C. K., Corlett, J. E., Marshall, F. M. and Black, C. R. (1996). Principles of resource capture and utilization of light and water. In Tree-Crop Interactions: A Physiological Approach, (Eds Ong, C. K. and Huxley, P.). Wallingford: CAB International.Google Scholar
Pinkard, E. A., Battaglia, M. and Mohammed, C. L. (2007). Defoliation and nitrogen effects on photosynthesis and growth of Eucalyptus globulus . Tree Physiology 27:10531063.CrossRefGoogle ScholarPubMed
Prasad, J. V. N. S., Korwar, G. R., Rao, K. V., Mandal, U. K., Rao, C. A. R., Rao, G. R., Ramakrishna, Y. S., Venkateswarlu, B., Rao, S. N., Kulkarni, H. D. and Rao, M. R. (2010). Tree row spacing affected agronomic and economic performance of Eucalyptus-based agroforestry in Andhra Pradesh, Southern India. Agroforestry Systems 78 (3):253267.CrossRefGoogle Scholar
Quentin, A. G., O’Grady, A. P., Beadle, C. L., Worledge, D. and Pinkard, E. A. (2011). Responses of transpiration and canopy conductance to partial defoliation of Eucalyptus globulus trees. Agricultural Forest Meteorology 151:356364.CrossRefGoogle Scholar
Righi, C. A. and Bernardes, M. S. (1999). Modelo de atenuação de radiação para sistema agroflorestal de seringueira (Hevea brasiliensis) e feijoeiro (Phaseolus vulgaris). In Abstracts of the 7th Cong Bras Fisiol Veg Brasília-DF Brazilian Jour Plant Physiol 11 (56) (Supplement).Google Scholar
Righi, C. A. and Bernardes, M. S. (2008). The potential for increasing rubber production by matching tapping intensity to leaf area index. Agroforestry Systems 72 (1):113.CrossRefGoogle Scholar
Righi, C. A., Bernardes, M. S., Castro, D. S. and Abbud, D. M. (2003). Fenologia e variação temporal do índice de área foliar de três cultivares de seringueira (Hevea spp.). Agrotrópica 13 (3):125132.Google Scholar
Righi, C. A., Bernardes, M. S., Lunz, A. M. P., Pereira, C. R., Dourado-Neto, D. and Favarin, J. L. (2007). Measurement and simulation of solar radiation availability in relation to the growth of coffee plants in an agroforestry system with rubber trees. Rev Árvore 31:195207.CrossRefGoogle Scholar
Roberts, J. (2000). The influence of physical and physiological characteristics of vegetation on their hydrological response. Hydrological Processes 14:28852901.3.0.CO;2-Z>CrossRefGoogle Scholar
Sutcliff, J. F. (1980). As Plantas e a água. São Paulo: EDUSP.Google Scholar
Tsukamoto Filho, A. A. (1999). Introdução do palmiteiro (Euterpe edulis Martius) em sistemas agroflorestais em Lavras- Minas Gerais. Dissertation (M.Sc.) Universidade Federal de Lavras, Lavras.Google Scholar
Vile, D., Garnier, E., Shipley, B., Laurent, G., Navas, M. L., Roumet, C., Lavorel, S., Díaz, S., Hodgson, J. G., Lloret, F., Midgley, G. F., Poorter, H., Rutherford, M. C., Wilson, P. J. and Wright, I. J. (2005). Specific leaf area and dry matter content estimate thickness in laminar leaves. Annals of Botany 96:11291136.CrossRefGoogle ScholarPubMed
Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213227.CrossRefGoogle Scholar
Willey, R. W. and Reddy, M. S. (1981). A field technique for separating above- and bellow-ground interactions in intercropping: and experiment with pearl millet/groundnut. Experimental Agriculture 17 (3):257264.CrossRefGoogle Scholar
Wilson, P. J., Thompson, K. and Hodgson, J. G. (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist 143 (1):155162.CrossRefGoogle Scholar
Withers, J. R. (1979). Studies on the status of unburnt Eucalyptus woodland at ocean grove, Victoria. IV. The effect of shading on seedling establishment. Australian Journal Botany 27 (1):4766.CrossRefGoogle Scholar