Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T19:38:14.208Z Has data issue: false hasContentIssue false

Rotational grazing management of forage peanut

Published online by Cambridge University Press:  30 June 2020

Lucas da Rocha Carvalho*
Affiliation:
University of São Paulo (USP), ‘Luiz de Queiroz’ College of Agriculture (ESALQ), Av. Pádua Dias, 11, CEP 13418-900, Piracicaba, SP, Brazil
Lilian Elgalise Techio Pereira
Affiliation:
University of São Paulo (USP), Faculty of Animal Science and Food Engineering (FZEA), Department of Animal Science. Av. Duque de Caxias Norte, 225 – Campus Fernando Costa, CEP 13635-900. Pirassununga, SP, Brazil
Sila Carneiro Da Silva
Affiliation:
University of São Paulo (USP), ‘Luiz de Queiroz’ College of Agriculture (ESALQ), Av. Pádua Dias, 11, CEP 13418-900, Piracicaba, SP, Brazil
*
*Corresponding author. Email: [email protected]

Abstract

The perennial forage peanut is a stoloniferous, perennial tropical legume with potential for use in pastures. Based on the hypothesis that under intermittent stocking herbage accumulation would follow a similar pattern to that described for tropical forage grasses, the objective of this study was to evaluate canopy characteristics and herbage accumulation of forage peanut subjected to strategies of rotational grazing management. Treatments corresponded to all possible combinations of two grazing frequencies (regrowth interrupted at 95% and maximum canopy light interception – LI95% and LIMax) and two grazing severities (post-grazing canopy heights (CHs) equivalent to 40 and 60% of the pre-grazing heights). Treatments were imposed to experimental units during an adaptation period (from November 2014 to January 2015) and the subsequent experimental period lasted from February 2015 to April 2016, comprising two consecutive pasture growing seasons with no interruption between them (summer I to summer II). The pre-grazing targets of LI95% and LIMax corresponded to CHs of 13 and 18 cm, respectively. Forage peanut showed high grazing tolerance as pre-grazing leaf area index (except during summer I and autumn/winter), total herbage, and leaflet dry matter accumulation varied only with seasons. Higher rates of herbage production were recorded during summer I and summer II, followed by those during late and early spring and autumn/winter. Since there was no difference in the pattern of herbage accumulation between LI95% and LIMax and stolons predominated at the bottom of the canopies, forage peanut may be rotationally grazed with greater flexibility than most tropical forage grasses. Recommended pre-grazing CHs are within 13 and 18 cm, and post-grazing heights between 40 and 60% of the pre-grazing height.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonzo, L.A., Ferreira, O.G., Vaz, R.Z., Costa, O.D., Motta, J.F. and Brondani, W.C. (2017). Amendoim forrageiro manejado com baixos resíduos de pastejo por ovinos. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 69, 173180. https://doi.org/10.1590/1678-4162-9157CrossRefGoogle Scholar
Barthram, G.T. (1985). Experimental techniques: the HFRO sward stick. In Biennial Report (eds), The Hill Farming Research Organization. Midlothian: HFRO, pp. 2930.Google Scholar
Birch, C.P.D. and Hutchings, M.J. (1994). Exploitation of patchily distributed soil resources by the clonal herb Glechoma hederacea. Journal of Ecology 82, 653664. https://doi.org/10.2307/2261272CrossRefGoogle Scholar
Birch, C.P.D. and Hutchings, M.J. (1999). Clonal segmentation. The development of physiological independence within stolons of Glechoma hederacea L. (Lamiaceae). Plant Ecology 141, 2131. https://doi.org/10.1023/A:1009810731100CrossRefGoogle Scholar
Brock, J.L., Hyslop, M.G. and Widdup, K.H. (2003). A review of red and white clovers in the dryland environment. In Moot, D.J. (ed), Legumes for Dryland Pastures. Grassland Research and Practices. Christchurch: New Zealand Grassland Association, 11, pp. 101107.Google Scholar
Carnevalli, R.A., Da Silva, S.C., Bueno, A.D.O., Uebele, M.C., Bueno, F.O., Hodgson, J., … Morais, J.P.G. (2006). Herbage production and grazing losses in Panicum maximum cv. Mombaça under four grazing managements. Tropical Grasslands 40, 165176.Google Scholar
Carvalho, L.R. (2014). Interceptação luminosa, massa de raízes e acúmulo de forragem em Arachis pintoi cv. Belmonte submetido a intensidades de pastejo. Piracicaba, São Paulo: 77p. Dissertação (Mestrado em Ciências) – Escola Superior de Agricultura ‘Luiz de Queiroz’. https://doi.org/10.11606/D.11.2014.tde-19032014-161818CrossRefGoogle Scholar
CEPAGRI – Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura. (2016). Campinas: UNICAMP. Available at https://www.cpa.unicamp.br. Accessed 26 November 2016.Google Scholar
CEPLAC – Comissão Executiva do Plano da Lavoura Cacaueira. (2011). Itabuna: MAPA.Available at https://www.ceplac.gov.br/radar/amendoim%20forrageiro.htm. Acessed 14 October 2017.Google Scholar
Chen, B.J.W., Vermeulen, P.J., During, H.J. and Anten, N.P.R. (2015). Testing for disconnection and distance effects on physiological self-recognition within clonal fragments of Potentilla reptans. Frontiers in Plant Science 6, 19. https://doi.org/10.3389/fpls.2015.00215CrossRefGoogle ScholarPubMed
Cook, B.G., Pengelly, B.C., Brown, S.D., Donnelly, J.L., Eagles, D.A., Franco, M.A., … Schultze-Kraft, R. (2005). The Production of Tropical Forages: An Alternative Selection Tool. Queensland: CSIRO.Google Scholar
Da Silva, S.C., Sbrissia, A.F. and Pereira, L.E.T. (2015). Ecophysiology of C4 forage grasses understanding plant growth for optimising their use and management. Agriculture 5, 598625. https://doi.org/10.3390/agriculture5030598CrossRefGoogle Scholar
Fernandes, F.D., Ramos, A.K., Carvalho, M.A., Maciel, G.A., de Assis, G.M. and Braga, G.J. (2017). Forage yield and nutritive value of Arachis spp. genotypes in the Brazilian savanna. Tropical Grasslands 5, 1928. https://doi.org/10.17138/TGFT(5)19-28CrossRefGoogle Scholar
Fialho, C.A. (2015). Características morfogênicas e estruturais de amendoim forrageiro (Arachis pintoi Krapovickas & Gregory cv. Belmonte) submetido a intensidades de pastejo sob lotação contínua. Piracicaba, São Paulo: 121p. Tese (Doutorado em Ciências) – Escola Superior de Agricultura ‘Luiz de Queiroz’. https://doi.org/T.11.2015.tde-04052015-110506Google Scholar
Fonseca, L., Mezzalira, J.C., Bremm, C., Gonda, H.L. and Carvalho, P.D.F. (2012). Management targets for maximising the short-term herbage intake rate of cattle grazing in Sorghum bicolor. Livestock Science 145, 205211. https://doi.org/10.1016/j.livsci.2012.02.003CrossRefGoogle Scholar
Gildersleeve, R.R., Ocumpaugh, W.R., Quesenberry, K.H. and Moore, J.E. (1987). Mob-grazing of morphologically different Aeschynomene species. Tropical Grasslands 21, 123132.Google Scholar
Gimenes, F.A.M., Barbosa, H.Z., Gerdes, L., Giacomini, A.A., Batista, K., Mattos, W.T., Premazzi, L.M. and Miguel, A.N.V. (2017). The utilization of tropical legumes to provide nitrogen to pastures: a review. African Journal of Agricultural Research 12, 8592. https://doi.org/10.5897/AJAR2016.11893Google Scholar
Holmes, M.G., Farmer, A.M. and Bartley, M.R. (1983). Perception of shade. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 303, 503521.Google Scholar
Hutchings, M.J. (1988). Differential foraging for resources, and structural plasticity in plants. Trends in Ecology & Evolution 3, 200204. https://doi.org/10.1016/0169-5347(88)90007-9CrossRefGoogle ScholarPubMed
Hutchings, M.J. and Kroon, H. (1994). Foraging in plants: the role of morphological plasticity in resource acquisition. Advances in Ecological Research 25, 159238. https://doi.org/10.1016/S0065-2504(08)60215-9CrossRefGoogle Scholar
Jones, R.M. (1993). Persistence of Arachis pintoi cv. Amarillo on three soil types at Samford, south-eastern Queensland. Tropical Grasslands 27, 1115.Google Scholar
Korte, C.J., Watkin, B.R. and Harris, W. (1982). Use of residual leaf area index and light interception as criteria for spring-grazing management of a ryegrass-dominant pasture. New Zealand Journal of Agricultural Research 25, 309319. https://doi.org/10.1080/00288233.1982.10417892CrossRefGoogle Scholar
Littell, R.C., Pendergast, J. and Natarajan, R. (2000). Modelling covariance structure in the analysis of repeated measures data. Statistics in Medicine 19, 17931819. https://doi.org/10.1002/1097-0258(20000715)3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Louâpre, P., Bittebière, A.K., Clément, B., Pierre, J.S. and Mony, C. (2012). How past and present influence the foraging of clonal plants? PLoS One 7, e38288. https://doi.org/10.1371/journal.pone.0038288CrossRefGoogle ScholarPubMed
Méthy, M., Alpert, P. and Roy, J. (1990). Effects of light quality and quantity on growth of the clonal plant Eichhornia crassipes. Oecologia 84, 265271. https://doi.org/10.1007/BF00318283CrossRefGoogle Scholar
Miranda, C.H.B., Vieira, A. and Cadisch, G. (2003). Determinação da fixação biológica de nitrogênio no amendoim forrageiro (Arachis spp.) por intermédio da abundância natural de 15N. Revista Brasileira de Zootecnia 32, 18591865. https://doi.org/10.1590/S1516-35982003000800008CrossRefGoogle Scholar
Ottaviani, G., Martínková, J., Herben, T., Pausas, J.G. and Klimešová, J. (2017). On plant modularity traits: functions and challenges. Trends in Plant Science 22, 648651. https://doi.org/10.1016/j.tplants.2017.05.010CrossRefGoogle ScholarPubMed
Parsons, A.J. and Penning, P.D. (1988). The effect of the duration of regrowth on photosynthesis, leaf death and the average rate of growth in a rotationally grazed sward. Grass and Forage Science 43, 1527. https://doi.org/10.1111/j.1365-2494.1988.tb02137.xCrossRefGoogle Scholar
Rao, I.M. and Kerridge, P.C. (1994). Mineral nutrition of forage Arachis. In Kerridge, I.M. and Hardy, B. (eds), Biology and Agronomy of Forage Arachis. Colombia: CIAT, pp. 7183.Google Scholar
Rincón, C.A., Cuesta, M.P.A., Perez, B.R., Lascano, C.E. and Fergurson, J. (1992). Maní forrajero perenne (Arachis Pintoi Krapovickas & Gregory): Una alternativa para ganaderos y agricultores, 219. Boletin Técnico. Colombia: ICA/CIAT. https://hdl.handle.net/10568/69587Google Scholar
Silva, G.P., Fialho, C.A., Carvalho, L.R., Fonseca, L., Carvalho, P.C.F., Bremm, C. and Da Silva, S.C. (2018). Sward structure and short-term herbage intake in Arachis pintoi cv. Belmonte subjected to varying intensities of grazing. Journal of Agricultural Science 156, 9299. https://doi.org/10.1017/S0021859617000855CrossRefGoogle Scholar
Thomas, R.G. and Hay, M.J.M. (2004). Evidence suggests plagiotropic clonal species have evolved a branching physiology emphasizing regulation by nodal roots. Evolutionary Ecology 18, 409427. https://doi.org/10.1007/s10682-004-5137-5CrossRefGoogle Scholar
Trindade, J.K., Da Silva, S.C., Souza Júnior, S.J., Giacomini, A.A., Zeferino, C.V., Guarda, V.D.A. and Carvalho, P.C.F (2007). Composição morfológica da forragem consumida por bovinos de corte durante o rebaixamento do capim-marandu submetido a estratégias de pastejo rotativo. Pesquisa Agropecuária Brasileira 42, 883890. https://doi.org/10.1590/S0100-204X2007000600016CrossRefGoogle Scholar
Valentim, J.F., Andrade, C.M.S., Mendonca, H.A. and Sales, M.F.L. (2003). Velocidade de estabelecimento de acessos de amendoim forrageiro na Amazônia Ocidental. Revista Brasileira de Zootecnia 32, 15691577. https://doi.org/10.1590/S1516-35982003000700005CrossRefGoogle Scholar
Supplementary material: File

da Rocha Carvalho et al. supplementary materials

da Rocha Carvalho et al. supplementary materials 1

Download da Rocha Carvalho et al. supplementary materials(File)
File 24.2 KB
Supplementary material: Image

da Rocha Carvalho et al. supplementary materials

da Rocha Carvalho et al. supplementary materials 2

Download da Rocha Carvalho et al. supplementary materials(Image)
Image 2.9 MB