Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-30T19:47:40.563Z Has data issue: false hasContentIssue false

Desarrollo temprano y genes inestables en la esquizofrenia: resultados preliminares

Published online by Cambridge University Press:  12 May 2020

Agnes Ayton
Affiliation:
Departamento de Psiquiatría, Universidad de Hull, East Riding Campus, Conistan House, Willerby, East Yorkshire HU106NS, Reino Unido
Alex G. Morris
Affiliation:
Instituto de Oftalmología, UCL43 Bath Street, Londres, EC1V9EL, Reino Unido
Philip J. Tyson
Affiliation:
Departamento de Psiquiatría, Universidad de Hull, East Riding Campus, Conistan House, Willerby, East Yorkshire HU106NS, Reino Unido
David Hunt
Affiliation:
Instituto de Oftalmología, UCL43 Bath Street, Londres, EC1V9EL, Reino Unido
Ann M. Mortimer
Affiliation:
Departamento de Psiquiatría, Universidad de Hull, East Riding Campus, Conistan House, Willerby, East Yorkshire HU106NS, Reino Unido
David Cottrell
Affiliation:
Unidad Académica de Salud Mental del Niño y del Adolescente, 12 Clarendon Road, Leeds LS29NN, Reino Unido
Get access

Resumen

Antecedentes.

Las repeticiones de trinucleótidos se han asociado con la esquizofrenia, pero los datos, basados en información clínica transversal, son equívocos.

Propósitos.

Examinar la relación entre el tamaño de la repetición de CAG/CTG genómico y el desarrollo premórbido en la esquizofrenia.

Método.

Se evaluó por entrevistas con los padres el desarrollo temprano y el funcionamiento premórbido de 22 pacientes con diagnóstico de esquizofrenia del DSM IV. Se utilizó la técnica de detección de la expansión de repeticiones (DER) para medir el tamaño de la repetición de CAG/CTG genómico, y la RCP para el tamaño de la repetición de CAG en los loci ERDA-1 y CTG 18.1.

Resultados.

Hubo una asociación inversa entre el tamaño de CAG/CTG y las complicaciones perinatales. Los pacientes con retraso evolutivo del habla y motor tenían repeticiones mayores. Los resultados no se debían a la expansión en los genes ERDA-1 y CTG 18.1.

Conclusiones.

La expansión de la repetición de CAG/CTG se asocia con retraso evolutivo del habla y motor en la esquizofrenia. Proponemos que el modelo evolutivo puede ser útil para la investigación en la genética de la esquizofrenia.

Type
Artículo original
Copyright
Copyright © European Psychiatric Association 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliografía

American Psychiatric Association. Global assessment of functioning scale. In: American Psychiatric Association, editor. DSM-III-R: diagnostic and statistical manual of mental disorders. Washington: DC: APA; 1984.Google Scholar
Barkley, RA. Attention-deficit hyperactivity disorder: a handbook for diagnosis and treatment. The Guilford Press; 1990. p. 261–5.Google Scholar
Bassett, AS, Chow, KW. 22ql 1 deletion syndrome: a genetic subtype of schizophrenia. Biol Psychiatry 1999;46(7): 882–91.CrossRefGoogle Scholar
Bowen, T, Guy, CA, Cardno, AG, Vincent, JB, Kennedy, JL, Jones, LA, et al. Repeat sizes at CAG/CTG loci CTG18.1, ERDA1 and TGCa 13-7a in schizophrenia. Psych Genet 2000; 10(l):33–7.CrossRefGoogle Scholar
Burgess, CE, Lindblad, K, Sidransky, E, Yuan, QP, Long, RT, Breschel, T, et, al. Large CAG/CTG repeats are associated with childhood-onset schizophrenia. Mol Psychiatry 1998;3(4): 321–7.CrossRefGoogle ScholarPubMed
Cannon-Spoor, HE, Potkin, SG, Wyatt, RJ. Measurement of premorbid adjustment in chronic schizophrenia. Schizophr Bull 1982;8(3):470–84.CrossRefGoogle ScholarPubMed
Cardno, AG, Murphy, KC, Jones, LA, Guy, CA, Asherson, P, De Azevedo, MH, et, al. Expanded CAG/CTG repeats in schizophrenia. A study of dinical correlates. Br J Psychiatr 1996; 169(6):766–71.CrossRefGoogle Scholar
Heun, R, Maier, W. The role of obstetric complications inschizophrenia. J Nerv Ment Dis 1993;181(4):220–6.CrossRefGoogle Scholar
Jones, P, Rodgers, B, Murray, R, Marmot, M. Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet 1994;8934:1398–402.CrossRefGoogle Scholar
Jones, PB, Done, DJ. From birth to onset: a developmental perspective of schizophrenia in two national birth cohorts. In: Keshavan, MS, Murray, RM, editors. Neurodevelopment and Adult Psychopathology. Cambridge: Cambridge University Press; 1997. p. 119–36.Google Scholar
Jones, PB, Rantakallio, P, Hartikainen, AL, Isohanni, M, Sipila, P. Schizophrenia as a long-term outcome of pregnancy, delivery, and perinatal complications: a 28-year follow-up of thenorth Finland general population birth cohort. Am J Psychiatry 1998;155(3):355–64.CrossRefGoogle Scholar
Joober, R, Benkelfat, C, Jannatipour, M, Turecki, G, Lal, S, Mandel, JL, et, al. Polyglutamine-containing proteins in schizophrenia [see comments]. Mol Psychiatry 1999;4(l):53–7.CrossRefGoogle Scholar
Margolis, RL, Mclnnis, MG, Rosenblatt, A, Ross, CA. Trinucleotide repeat expansión and neuropsychiatric disease. [Review] [211 refs], Arch Gen Psychiatry 1999;56(11): 1019–31.CrossRefGoogle Scholar
Mclnnis, MG, Swift-Scanlanl, T, Mahoney, AT, Vincent, J, Verheyen, G, Lan, TH, et, al. Allelic distribution of CTG 18.1 in Caucasian populations: association studies in bipolar disorder, schizophrenia, and ataxia. Mol Psychiatry 2000;5(4):439–42.CrossRefGoogle Scholar
McNeil, TF, Cantor-Graae, E, Torrey, EF, Sjostrom, K, Bowler, A, Taylor, E, et, al. Obstetric complications in histories of monozygotic twins discordant and concordant for schizophrenia. Acta Psychiatr Scand 1994;89(3): 196204.CrossRefGoogle Scholar
Moriniere, S, Saada, C, Holbert, S, Sidransky, E, Galat, A, Ginns, E, et, al. Detection of polyglutamine expansión in a new acidic protein: a candidate for childhood onset schizophrenia? [see comments]. Mol Psychiatry 1999;4(1):58- 63.CrossRefGoogle Scholar
Morris, AG, Gaitonde, E, McKenna, PJ, Mollon, JD, Hunt, DM. CAG repeat expansions and schizophrenia: association with disease in females and with early age-at-onset. Hum Mol Genet 1995;4(10):19576l.CrossRefGoogle ScholarPubMed
Mortimer, AM, McKenna, PJ, Lund, CE, Mannuzza, S. Rating of negative symptoms using the high Royds evaluation of negativity (HEN) scale. Br J Psychiatry 1989;(7) [Suppl]:89- 92.CrossRefGoogle ScholarPubMed
Murray, RM, O’Callaghan, E, Castle, DJ, Lewis, SW. A neurodevelopmental approach to the classification of schizophrenia. [Review] [90 refs]. Schizophr Bull 1992;18(2):319–32.CrossRefGoogle Scholar
O’Donovan, MC, Guy, C, Craddock, N, Bowen, T, McKeon, P, Macedo, A, et, al. Confirmation of association between expended CAG/CTG repeats and both schizophrenia and bipolar disorder. Psychol Med 1996;26(6): 1145–53.CrossRefGoogle Scholar
O’Donovan, MC, Owen, MJ. Candidate-gene association studies of schizophrenia. [Review] [37 refs]. Am J Hum Genet 1999;65(3):587–92.CrossRefGoogle Scholar
Petronis, A, Bassett, AS, Honer, WG, Vincent, JB, Tatuch, Y, Sasaki, T, et, al. Search for unstable DNA in schizophrenia families with evidence for genetic anticipation. Am J Hum Genet 1996;59(4):905–11.Google ScholarPubMed
Roy, M, Lanctot, G, Merette, C, Cliché, D, Foumier, JP, Boutin, P, et, al. Clinical and methodological factors related to reliability of the best-estimate diagnostic procedure. Am J Psychiatry 1997; 154(12): 1726–33.CrossRefGoogle ScholarPubMed
Schalling, M, Hudson, TJ, Buetow, KH, Housman, DE. Direct detection of novel expended trinucleotide repeats in the human genome. Nature Genet 1993;4(2):135–9.CrossRefGoogle Scholar
Sidransky, E, Burgess, C, Ikeuchi, T, Lindblad, K, Long, RT, Philibert, RA, et, al. A triples repeat on 17q accounts for most expansions detected by the repeat-expansiondetection technique. Am J Hum Genet 1998;62(6): 1548–51.CrossRefGoogle Scholar
Sirugo, G, Deinard, AS, Kidd, JR, Kidd, KK. Survey of máximum CTG/CAG repeat lengths in humans and nonhuman primates: total genome sean in populations using the repeat expansión detection (RED) method. Hum Mol Genet 1997; 6(3):403–8.CrossRefGoogle Scholar
Verheyen, GR, Del Favero, J, Mendlewicz, J, Lindblad, K, Van Zand, K, Aalbregtse, M, et, al. Molecular interpretation of expended RED products in bipolar disorder by CAG/CTG repeats located at chromosomes 17q and 18q. Neurobiol Disease 1999;6(5):424–32.CrossRefGoogle Scholar