Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T01:52:16.867Z Has data issue: false hasContentIssue false

Travelling waves for diffusive and strongly competitive systems: Relative motility and invasion speed

Published online by Cambridge University Press:  08 May 2015

LÉO GIRARDIN
Affiliation:
École Normale Supérieure de Cachan, France email: [email protected]
GRÉGOIRE NADIN
Affiliation:
Laboratoire Jacques-Louis Lions, CNRS, Université Paris 6, France email: [email protected]

Abstract

Our interest here is to find the invader in a two species, diffusive and competitive Lotka–Volterra system in the particular case of travelling wave solutions. We investigate the role of diffusion in homogeneous domains. We might expect a priori two different cases: strong interspecific competition and weak interspecific competition. In this paper, we study the first one and obtain a clear conclusion: the invading species is, up to a fixed multiplicative constant, the more diffusive one.

Type
Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Berestycki, H. (1981) Le nombre de solutions de certains problèmes semi-linéaires elliptiques. J. Funct. Anal. 40 (1), 129.CrossRefGoogle Scholar
[2]Conti, M., Verzini, G. & Terracini, S. (2005) A regularity theory for optimal partition problems. In: SPT 2004—Symmetry and Perturbation Theory, World Sci. Publ., Hackensack, pp. 9198.CrossRefGoogle Scholar
[3]Conti, M., Terracini, S. & Verzini, G. (2005) A variational problem for the spatial segregation of reaction-diffusion systems. Indiana Univ. Math. J. 54 (3), 779815.CrossRefGoogle Scholar
[4]Crooks, E. C. M., Dancer, E. N., Hilhorst, D., Mimura, M. & Ninomiya, H. (2004) Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions. Nonlinear Anal. Real World Appl. 5 (4), 645665.CrossRefGoogle Scholar
[5]Dancer, E. N., Hilhorst, D., Mimura, M. & Peletier, L. A. (1999) Spatial segregation limit of a competition-diffusion system. Eur. J. Appl. Math. 10 (2), 97115.CrossRefGoogle Scholar
[6]Dockery, J., Hutson, V., Mischaikow, K. & Pernarowski, M. (1998) The evolution of slow dispersal rates: A reaction diffusion model. J. Math. Biol. 37 (1), 6183.CrossRefGoogle Scholar
[7]Du, Y. & Lin, Z. (2010) Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal. 42, 377405.CrossRefGoogle Scholar
[8]Gardner, R. A. (1982) Existence and stability of travelling wave solutions of competition models: A degree theoretic approach. J. Differ. Equ. 44 (3), 343364.CrossRefGoogle Scholar
[9]Huang, W. & Han, M. (2011) Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model. J. Differ. Equ. 251 (6), 15491561.CrossRefGoogle Scholar
[10]Kan-On, Y. (1995) Parameter dependence of propagation speed of travelling waves for competition-diffusion equations. SIAM J. Math. Anal. 26 (2), 340363.CrossRefGoogle Scholar
[11]Kolmogorov, A., Petrovsky, I. & Piscounov, N. (1937) Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bulletin Université d'Etat à Moscou (Bjul. Moskovskogo Gos. Univ.) 1 (1), 126.Google Scholar
[12]Lewis, M. A., Li, B. & Weinberger, H. F. (2002) Spreading speed and linear determinacy for two-species competition models. J. Math. Biol. 45 (3), 219233.CrossRefGoogle ScholarPubMed
[13]Nakashima, K. & Wakasa, T. (2007) Generation of interfaces for Lotka–Volterra competition–diffusion system with large interaction rates. J. Differ. Equ. 235 (2), 586608.CrossRefGoogle Scholar
[14]Quitalo, V. (2013) A free boundary problem arising from segregation of populations with high competition. Arch. Ration. Mech. Anal. 210 (3), 857908.CrossRefGoogle Scholar