Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T21:08:58.188Z Has data issue: false hasContentIssue false

An analysis technique for stabilized finite elementsolution of incompressible flows

Published online by Cambridge University Press:  15 April 2002

Tomás Chacón Rebollo*
Affiliation:
Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla. C/ Tarfia, s/n. 41080 Sevilla, Spain. ([email protected])
Get access

Abstract

This paper presents anextension to stabilized methods of the standard technique for thenumerical analysis of mixed methods. We prove that the stability of stabilizedmethods follows from an underlying discrete inf-sup condition, plus a uniformseparation property between bubble and velocity finite element spaces. We applythe technique introduced to provethe sta bi li ty of stabilized spectral element methods so asstabilized solution of the primitive equations of the ocean.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amrouche, C. and Girault, V., Decomposition of Vector spaces and application to the Stokes problem in arbitrary dimensions. Czeschoslovak Math. J. 44 (1994) 109-140.
Besson, O. and Laydi, M. R., Some estimates for the anisotropic Navier- Stokes equations and for the hydrostatic approximation. RAIRO-Modél. Math. Anal. Numér. 26 (1992) 855-865. CrossRef
Babuška,, I. The Finite Element Method with Lagrange multipliers. Numer. Math. 20 (1973) 179-192. CrossRef
Baiocchi, C., Brezzi, F. and Franca, L. P., Virtual Bubbles and Galerkin-least-squares type methods (Ga.L.S.). Comput. Methods Appl. Mech. Engrg. 105 (1993) 125-141. CrossRef
C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques. Springer-Verlag, Berlin (1992).
H. Brézis, Analyse Fonctionnelle. Masson, Paris (1983).
Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange Multipliers. RAIRO-Anal. Numér. R2 (1974) 129-151.
Brezzi, F. and Douglas, J., Stabilized mixed methods for the Stokes problem. Numer. Math. 53 (1988) 225-236. CrossRef
F. Brezzi and J. Pitkäranta, On the stabilization of Finite Element approximations of the Stokes problem, in Efficient Solutions for Elliptic Systems. Notes on Numerical Fluid Mechanics 10, W. Hackbusch Ed., Springer-Verlag, Berlin (1984) 11-19.
Chacón Rebollo, T., A term by term Stabilization Algorithm for Finite Element solution of incompressible flow problems. Numer. Math. 79 (1998) 283-319. CrossRef
Chacón Rebollo, T. and Domínguez De, A.lgado, A unified analysis of Mixed and Stabilized Finite Element Solutions of Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 182 (2000) 301-331. CrossRef
T. Chacón Rebollo and F. Guillén González, An intrinsic analysis of existence of solutions for the hydrostatic approximation of Navier-Stokes equations. C. R. Acad. Sci. Paris, Série I 330 (2000) 841-846.
P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
Franca, L.P. and Frey, S.L., Stabilized Finite Elements: II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 99 (1992) 209-233. CrossRef
Franca, L.P. and Stenberg, R., Error analysis fo some Galerkin-Least-Squares methods for the elasticity equations. SIAM J. Numer. Anal. 28 (1991) 1680-1697. CrossRef
L.P. Franca, T.J.R. Hughes and R. Stenberg, Stabilized Finite Element Methods, in Incompressible Computational Fluid Dynamics, M.D. Gunzburger and R.A. Nicolaides Eds., Cambridge Univ. Press, New York (1993).
V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes equations. Springer-Verlag, Berlin (1988).
R. Dautray and L.L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Masson, Paris (2000).
Gervasio, P. and Saleri, F., Stabilized Spectral Element approximation for the Navier-Stokes equations. Numer. Methods Partial Differential Eq. 14 (1988) 115-141. 3.0.CO;2-T>CrossRef
Hughes, T.J.R. and Franca, L.P., A new Finite Element formulation for CFD: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Engrg. 65 (1987) 85-96. CrossRef
Hughes, T.J.R., Franca, L.P. and Balestra, M., A new Finite Element formulation for CFD: V. Circumventing the Brezzi-Babuška condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl Mech. Engrg. 59 (1986) 85-99. CrossRef
Knobloch, P. and Tobiska, L., Stabilization methods of Bubble type for the Q 1-Q 1-Element applied to the incompressible Navier-Stokes equations. ESAIM: M2AN 34 (2000) 85-107. CrossRef
R. Lewandowski, Analyse Mathématique et Océanographie. Masson, Paris (1997).
Lions, J.L., Temam, R. and Wang, S., New formulation of the primitive equations of the atmosphere and applications. Nonlinearity 5 (1992) 237-288. CrossRef
Pierre, R., Simple C 0-approximations for the computation of incompressible flows. Comput. Methods Appl Mech. Engrg. 68 (1989) 205-228. CrossRef
Russo, G., Bubble stabilization of Finite Element Methods fo the linearized incompressible Navier-Stokes equations. Comput. Methods Appl Mech. Engrg. 132 (1996) 335-343. CrossRef
Tobishka, L. and Verfürth, R., Analysis of a Streamline Diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM J. Numer. Anal. 33 (1996) 107-127. CrossRef
Verfürth, R., Analysis of some Finite Element solutions for the Stokes Problem. RAIRO-Anal. Numér. 18 (1984) 175-182. CrossRef