We study properties of the functional \begin{eqnarray} \mathscr{F}_{{\rm loc}}(u,\Omega):=\inf_{(u_{j})}\bigg\{ \liminf_{j\rightarrow\infty}\int_{\Omega}f(\nabla u_{j})\udx\, \left| \!\!\begin{array}{rl} & (u_{j})\subset W_{{\rmloc}}^{1,r}\left(\Omega, \RN\right) \\ & u_{j}\tostar u\,\,\textrm{in}\BV\left(\Omega, \RN\right) \end{array} \right. \bigg\}, \end{eqnarray} where u ∈BV(Ω;RN), andf:RN ×n → R is continuous and satisfies0 ≤ f(ξ) ≤L(1 + | ξ |r). For r ∈ [1,2),assuming fhas linear growth in certain rank-one directions, we combine a result of [A. Braides andA. Coscia, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994)737–756] with a new technique involving mollification to prove an upper bound forFloc. Then, for\hbox{$r\in[1,\frac{n}{n-1})$}, we prove thatFloc satisfiesthe lower bound \begin{equation*} \scF_{{\rm loc}}(u,\Omega) \geq \int_{\Omega}f(\nabla u (x))\ud x + \int_{\Omega}\finf\bigg(\frac{D^{s}u}{|D^{s}u|}\bigg)\,|D^{s}u|, \end{equation*} provided f is quasiconvex, and the recession functionf∞ (defined as\hbox{$ f^{\infty}(\xi):= \overline{\lim}_{t\rightarrow\infty}f(t\xi )/t$}) is assumed to be finite incertain rank-one directions. The proof of this result involves adapting work by[Kristensen, Calc. Var. Partial Differ. Eqs. 7 (1998)249–261], and [Ambrosio and Dal Maso, J. Funct. Anal. 109(1992) 76–97], and applying a non-standard blow-up technique that exploits fineproperties of BV maps. It also makes use of the fact that Floc has a measurerepresentation, which is proved in the appendix using a method of [Fonseca and Malý,Annal. Inst. Henri Poincaré Anal. Non Linéaire 14 (1997)309–338].