Article contents
On complexity and motion planning for co-rank one sub-Riemannian metrics
Published online by Cambridge University Press: 15 October 2004
Abstract
In this paper, we study the motion planning problem for generic sub-Riemannian metrics of co-rank one. We give explicit expressions for the metric complexity (in the sense of Jean [CITE]), in terms of the elementary invariants of the problem. We construct asymptotic optimal syntheses. It turns out that among the results we show, the most complicated case is the 3-dimensional. Besides the generic C ∞ case, we study some non-generic generalizations in the analytic case.
- Type
- Research Article
- Information
- ESAIM: Control, Optimisation and Calculus of Variations , Volume 10 , Issue 4 , October 2004 , pp. 634 - 655
- Copyright
- © EDP Sciences, SMAI, 2004
References
R. Abraham and J. Robbin, Transversal mappings and flows. W.A. Benjamin, Inc. (1967).
A. Agrachev, El-A. Chakir, El-H. and J.P. Gauthier, Sub-Riemannian metrics on R
3, in Geometric Control and non-holonomic mechanics, Mexico City (1996) 29-76, Canad. Math. Soc. Conf. Proc.
25, Amer. Math. Soc., Providence, RI (1998).
A. Agrachev and J.P. Gauthier, Sub-Riemannian Metrics and Isoperimetric Problems in the Contact case, L.S. Pontriaguine, 90th Birthday Commemoration, Contemporary Mathematics
64 (1999) 5-48 (Russian). English version: J. Math. Sci.
103, 639-663.
M.W. Hirsch, Differential Topology. Springer-Verlag (1976).
El-A. Chakir, El-H., J.P. Gauthier, I. Kupka, Small Sub-Riemannian balls on R
3.
J. Dynam. Control Syst.
2 (1996) 359-421.
Charlot, G., Quasi-Contact sub-Riemannian Metrics, Normal Form in R2n
, Wave front and Caustic in R
4.
Acta Appl. Math.
74 (2002) 217-263.
CrossRef
K. Goldberg, D. Halperin, J.C. Latombe and R. Wilson, Algorithmic foundations of robotics. AK Peters, Wellesley, Mass. (1995).
Mc Pherson Goreski, Stratified Morse Theory. Springer-Verlag, New York (1988).
M. Gromov, Carnot-Caratheodory spaces seen from within, in Sub-Riemannian geometry. A. Bellaiche, J.J. Risler Eds., Birkhauser (1996) 79-323.
Jean, F., Complexity of nonholonomic motion planning.
Internat. J. Control
74 (2001) 776-782.
CrossRef
Jean, F., Entropy and Complexity of a Path in Sub-Riemannian Geometry.
ESAIM: COCV
9 (2003) 485-508.
CrossRef
Jean, F. and Falbel, E., Measures and transverse paths in Sub-Riemannian Geometry.
J. Anal. Math.
91 (2003) 231-246.
T. Kato, Perturbation theory for linear operators. Springer-Verlag (1966) 120-122.
I. Kupka, Géometrie sous-Riemannienne, in Séminaire Bourbaki, 48e année, No. 817 (1995-96) 1-30.
G. Lafferiere and H. Sussmann, Motion Planning for controllable systems without drift, in Proc. of the 1991 IEEE Int. Conf. on Robotics and Automation (1991).
- 14
- Cited by