Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T05:50:09.215Z Has data issue: false hasContentIssue false

Exact Boundary Controllability of a Hybrid System of elasticity by the HUM Method

Published online by Cambridge University Press:  15 August 2002

Bopeng Rao*
Affiliation:
Institut de Recherche Mathématique Avancée, Université Louis Pasteur de Strasbourg, 7 rue René-Descartes, 67084 Strasbourg Cedex, France; [email protected].
Get access

Abstract

We consider the exact controllability of a hybridsystem consisting of an elastic beam, clamped at one end and attached at the other end to arigid antenna. Such a system is governed by one partialdifferential equation and two ordinary differential equations. Using theHUM method, we prove that the hybrid system is exactlycontrollable in an arbitrarily short time in the usual energy space.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Castro, C. and Zuazua, E., Boundary controllability of a hybrid system consisting in two flexible beams connected by a point mass. SIAM J. Control Optim. 36 (1998) 1576-1595. CrossRef
Hanssen, S. and Zuazua, E., Exact controllability and stabilization of a vibration string with an interior point mass. SIAM J. Control Optim. 33 (1995) 1357-1391. CrossRef
Littman, W. and Markus, L., Exact boundary controllability of a hybrid system of elasticity. Arch. Rational Mech. Anal. 103 (1988) 193-236. CrossRef
Littman, W. and Markus, L., Stabilization of a hybrid system of elasticity by feedback boundary damping. Ann. Mat. Pura Appl. 152 (1988) 281-330. CrossRef
J.L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Vol. I. Masson, Paris (1988).
Lions, J.L., Exact controllability, stabilizability, and perturbations for distributed systems. SIAM Rev . 30 (1988) 1-68. CrossRef
Markus, L. and You, Y.C., Dynamical boundary control for elastic Al plates of general shape. SIAM J. Control Optim. 31 (1993) 983-992. CrossRef
Micu, S. and Zuazua, E., Boundary controllability of a linear hybrid system arising in the control noise. SIAM J. Control Optim. 35 (1987) 1614-1637. CrossRef
A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983).
Rao, B., Stabilisation du modèle SCOLE par un contrôle frontière a priori borné. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 1061-1066.
B. Rao, Uniform stabilization and exact controllability of Kirchhoff plates with dynamical boundary controls.
Rao, B., Uniform stabilization of a hybrid system of elasticity. SIAM J. Control Optim. 33 (1995) 440-454. CrossRef
Rao, B., Contrôlabilité exacte frontière d'un système hybride en élasticité par la méthode HUM. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 889-894. CrossRef
J. Simon, Compact sets in the space L p (0,T;B). Ann. Mat. Pura Appl. (IV) CXLVI (1987) 65-96.
M. Slemrod, Feedback stabilization of a linear system in Hilbert space with an a priori bounded control. Math. Control Signals Systems (1989) 265-285.
E. Zuazua, Contrôlabilité exacte en un temps arbitrairement petit de quelques modèles de plaques, in Lions [5], 465-491.