Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-07T21:38:39.792Z Has data issue: false hasContentIssue false

Everywhere regularity for vectorial functionals with general growth

Published online by Cambridge University Press:  15 September 2003

Elvira Mascolo
Affiliation:
Dipartimento di Matematica “U. Dini”, Universita' di Firenze, viale Morgagni 67/A, 50134 Firenze, Italy; [email protected].
Anna Paola Migliorini
Affiliation:
Dipartimento di Matematica “U. Dini”, Universita' di Firenze, viale Morgagni 67/A, 50134 Firenze, Italy; [email protected].
Get access

Abstract

We prove Lipschitz continuity for local minimizers of integral functionals of the Calculus of Variations in the vectorial case, where the energy density depends explicitly on the space variables and has general growth with respect to the gradient. One of the models is $$ F\left(u \right)=\int_{\Omega}a(x)[h\left(|Du|\right)]^{p(x)}{\rm d}x $$ with h a convex function with general growth (also exponential behaviour is allowed).

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R. Aris, The mathematical theory of diffusion and reaction of permeable catalysts. Clarendon Press, Oxford (1975).
Acerbi, E. and Fusco, N., Regularity for minimizers of non-quadratic functionals: The case 1<p<2. J. Math. Anal. Appl. 140 (1989) 115-135. CrossRef
Acerbi, E. and Mingione, G., Regularity results for a class of functionals with nonstandard growth. Arch. Rational Mech. Anal. 156 (2001) 121-140. CrossRef
E. Acerbi and G. Mingione, Regularity results for quasiconvex functionals with nonstandard growth. Ann. Scuola Norm. Sup. Pisa 30 (2001).
Chiadò Piat, V. and Coscia, A., Hölder continuity of minimizers of functionals with variable growth exponent. Manuscripta Math. 93 (1997) 283-299. CrossRef
Coscia, A. and Mingione, G., Hölder continuity of the gradient of p(x)-harmonic mappings. C. R. Acad. Sci. Paris 328 (1999) 363-368. CrossRef
Dall'Aglio, A., Mascolo, E. and Papi, G., Local boundedness for minima of functionals with non standard growth conditions. Rend. Mat. 18 (1998) 305-326.
A. Dall'Aglio and E. Mascolo, $L^{\infty}$ -estimates for a class of nonlinear elliptic systems with non standard growth. Atti Sem. Mat. Fis. Univ. Modena (to appear).
F. Leonetti, E. Mascolo and F. Siepe, Everywhere regularity for a class of vectorial functionals under subquadratic general growth, Preprint. Dipartimento di Matematica ``U. Dini", University of Florence.
M. Giaquinta, Multiple integrals in the calculus of variations and non linear elliptic systems. Princeton Univ. Press, Princeton NJ, Ann. Math. Stud. 105 (1983).
Giaquinta, M. and Modica, G., Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscripta Math. 57 (1986) 55-99. CrossRef
E. Giusti, Metodi diretti nel calcolo delle variazioni. UMI, Bologna (1994).
Marcellini, P., Regularity and existence of solutions of elliptic equations with (p,q)-growth conditions. J. Differential Equations 90 (1991) 1-30. CrossRef
Marcellini, P., Regularity for elliptic equations with general growth conditions. J. Differential Equations 105 (1993) 296-333. CrossRef
Marcellini, P., Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa 23 (1996) 1-25.
Marcus, M. and Mizel, V.J., Continuity of certain Nemitsky operators on Sobolev spaces and chain rule. J. Anal. Math. 28 (1975) 303-334. CrossRef
Mascolo, E. and Papi, G., Local boundedness of integrals of Calculus of Variations. Ann. Mat. Pura Appl. 167 (1994) 323-339. CrossRef
A.P. Migliorini, Everywhere regularity for a class of elliptic systems with p, q growth conditions. Rend. Istit. Mat. Univ. Trieste XXXI (1999) 203-234.
A.P. Migliorini, Everywhere regularity for a class of elliptic systems with general growth conditions, Ph.D. Thesis. University of Florence, Italy (2000).
J. Mosely, A two dimensional Dirichlet problem with an exponential nonlinearity. SIAM J. Math. Anal. 14 5 (1983) 719-735.
Ruzicka, M., Flow of shear dependent electrorheological fluids. C. R. Acad. Sci. Paris 329 (1999) 393-398. CrossRef
Rajagopal, K.R. and Ruzicka, M., On the modeling of electrorheological materials. Mech. Res. Commun. 23 (1996) 401-407. CrossRef
K. Uhlenbeck, Regularity for a class of non-linear elliptic systems. Acta Math. 138 (1977) 219-240.
V.V. ZhiKov, On Lavrentiev phenomenon. Russian J. Math. Phys. 3 (1995) 249-269.