Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T04:35:59.605Z Has data issue: false hasContentIssue false

Vertices of Mather’s beta function, II

Published online by Cambridge University Press:  01 August 2009

DANIEL MASSART*
Affiliation:
Département de Mathématiques, Université Montpellier 2, 34095 Montpellier Cedex 5, France (email: [email protected])

Abstract

If the β-function of a time-periodic Lagrangian on a manifold M has a vertex at a k-irrational homology class h, then 2k<dim M, so if dim M=2, then h is rational.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Auer, F. and Bangert, V.. Differentiability of the stable norm in codimension one. Amer. J. Math. 128(1) (2006), 215238.CrossRefGoogle Scholar
[2]Bangert, V.. Geodesic rays, Busemann functions and monotone twist maps. Calc. Var. Partial Differential Equations 2(1) (1994), 4963.CrossRefGoogle Scholar
[3]Bernard, P.. Connecting orbits of time dependent Lagrangian systems. Ann. Inst. Fourier (Grenoble) 52(5) (2002), 15331568.CrossRefGoogle Scholar
[4]Bernard, P.. The dynamics of pseudographs in convex Hamiltonian systems. J. Amer. Math. Soc. 21(3) (2008), 615669.CrossRefGoogle Scholar
[5]Burago, D., Ivanov, S. and Kleiner, B.. On the structure of the stable norm of periodic metrics. Math. Res. Lett. 4(6) (1997), 791808.CrossRefGoogle Scholar
[6]Carneiro, M. J. D.. On minimizing measures of the action of autonomous Lagrangians. Nonlinearity 89 (1995), 10771085.CrossRefGoogle Scholar
[7]Fathi, A.. Weak KAM Theorem in Lagrangian Dynamics. Cambridge University Press, Cambridge, to appear.Google Scholar
[8]Fathi, A., Figalli, A. and Rifford, L.. On the hausdorff dimension of the mather quotient. Commun. Pure Appl. Math. to appear.Google Scholar
[9]Ferry, S.. When ϵ-boundaries are manifolds. Fund. Math. (3) (1975/76), 199–210.Google Scholar
[10]Hocking, J. and Young, G.. Topology, 3rd edn. Dover, New York, 1988.Google Scholar
[11]Mañé, R.. On the minimizing measures of Lagrangian dynamical systems. Nonlinearity 5(3) (1992), 623638.Google Scholar
[12]Mañé, R.. Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9(2) (1996), 273310.CrossRefGoogle Scholar
[13]Massart, D.. Stable norms of surfaces: local structure of the unit ball at rational directions. Geom. Funct. Anal. 7(6) (1997), 9961010.CrossRefGoogle Scholar
[14]Massart, D.. On Aubry sets and Mather’s action functional. Israël J. Math. 134 (2003), 157171.Google Scholar
[15]Massart, D.. Subsolutions of time-periodic Hamilton–Jacobi equations. Ergod. Th. & Dynam. Sys. 27(4) (2007), 12531265.Google Scholar
[16]Massart, D.. Aubry sets vs Mather sets in two degrees of freedom. Preprint arXiv:0803.2647v1 [math.DS].Google Scholar
[17]Mather, J. N.. Differentiability of the minimal average action as a function of the rotation number. Bol. Soc. Brasil. Mat. (N.S.) 21(1) (1990), 5970.Google Scholar
[18]Mather, J. N.. Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207 (1991), 169207.CrossRefGoogle Scholar
[19]Mather, J. N.. A property of compact, connected, laminated subsets of manifolds. Ergod. Th. & Dynam. Sys. 22(5) (2002), 15071520.CrossRefGoogle Scholar
[20]Osuna, O.. Vertices of Mather’s beta function. Ergod. Th. & Dynam. Sys. 25(3) (2005), 949955.CrossRefGoogle Scholar