Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-29T03:26:28.806Z Has data issue: false hasContentIssue false

Transfer operators for coupled map lattices

Published online by Cambridge University Press:  19 September 2008

Gerhard Keller
Affiliation:
Mathematisches Institut, Universität Erlangen-Nurnberg, Bismarckstr. 1½, D-8520 Erlangen, Germany
Martin Künzle
Affiliation:
Mathematisches Institut, Universität Erlangen-Nurnberg, Bismarckstr. 1½, D-8520 Erlangen, Germany

Abstract

Let L denote a finite or infinite one-dimensional lattice. To each lattice site is attached a copy of a dynamical system with phase space [0, 1] and dynamics described by a transformation τ: [0, 1] → [0, 1], which is the same on each component. Denote the direct product of these identical systems by T: XX where X = [0, 1]L. From this product system we obtain a coupled map lattice (CML) Sε: XX, if we introduce some interaction between the components, e.g. by averaging between nearest neighbours. The strength of the coupling depends upon some parameter ε.

For a broad class of piecewise expanding single-component-transformations τ we study such systems via their transfer operators and treat the coupled system as a perturbation of the uncoupled one. This yields existence and stability results for T-invariant measures with absolutely continuous finite-dimensional marginals.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[B]Blank, M. L.. Stochastic properties of deterministic dynamical systems. Sov. Sci. Rev. C Math. Phys. 6 (1987), 243271.Google Scholar
[BS]Bunimovich, L. A. & Sinai, Ya. G.. Spacetime chaos in coupled map lattices. Nonlinearity 1 (1988), 491516.CrossRefGoogle Scholar
[G]Giusti, E.. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser: Boston-Basel-Stuttgart, 1984.CrossRefGoogle Scholar
[GB]Góra, P. & Boyarsky, A.. Absolutely continuous invariant measures for piecewise expanding C 2 transformations in ℝ″. Israel. J. Math. 67 (1989), 272286.CrossRefGoogle Scholar
[HK]Hofbauer, F. & Keller, G.. Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180 (1982), 119140.CrossRefGoogle Scholar
[ITM]Ionescu-Tulcea, C. & Marinescu, G.. Théorie ergodique pour des classes d'opérations non complètement continues. Ann. Math 52 (2) (1950), 140147.CrossRefGoogle Scholar
[Ka]Kaneko, K.. Self-consistent Perron Frobenius operator for spatiotemporal chaos. Phys. Lett. A 39 (1989), 4752.CrossRefGoogle Scholar
[K1]Keller, G.. Ergodicité et mesures invariantes pour les transformations dilatantes par morceaux d'une région bornée du plan. C.R. Acad. Sci. Paris, Série A 289 (1979), 625627.Google Scholar
[K2]Keller, G.. Un théorème de la limite centrale pour une classe de transformations monotones par morceaux. C.R. Acad. Sci. Paris, Série A 291 (1980), 155158.Google Scholar
[K3]Keller, G.. Stochastic stability in some chaotic dynamical systems. Monatshefte Math. 94 (1982), 313333.CrossRefGoogle Scholar
[Ko]Komornik, J.. Asymptotic periodicity of Markov and related operators. Dyn. Rep. to appear.Google Scholar
[LLY]Lasota, A., Li, T. Y. & Yorke, J. A.. Asymptotic periodicity of the iterates of Markov operators. Trans. Amer. Math. Soc. 286 (1984), 751764.CrossRefGoogle Scholar
[LY]Lasota, A. & Yorke, J. A.. On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1973), 481488.CrossRefGoogle Scholar
[P]Pinkus, A.. n-widths in Approximation Theory. Springer-Verlag: Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 7, 1985.CrossRefGoogle Scholar
[R]Rychlik, M.. Bounded varition and invariant measures. Studia Math. LXXVI (1983), 6980.CrossRefGoogle Scholar
[Sch]Schaefer, H. H.. Topohgical Vector Spaces. MacMillan: New York, 1966.Google Scholar
[S]Suquet, P.. Fonctions à variation bornée sur un ouvert de ℝN. Travaux Sém. Analyse Convexe 8(1) (1978), no. 4.Google Scholar
[Z]Ziemer, W. P.. Weakly Differentiable Functions. Graduate Texts in Mathematics 120, Springer: Berlin, 1989.CrossRefGoogle Scholar