No CrossRef data available.
Article contents
Structure de certains produits semi directs
Published online by Cambridge University Press: 19 September 2008
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We consider the skew product of a dynamical system with a Bernoulli flow and we prove that under additional conditions this skew product is isomorphic to a direct product. We use this result to show that the minimal diffeomorphism with strictly positive entropy (constructed by M. R. Herman) is isomorphic to a direct product of a 0-entropy dynamical system with a Bernoulli shift.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1983
References
REFERENCES
[2]Brin, M.. Bernoulli diffeomorphisms with n−1 non zero exponents. Ergod. Th. & Dynam. Sys. 1 (1981), 1–7.CrossRefGoogle Scholar
[3]Gabriel, P.. Sur la structure des extensions à deux points du produit d'une transformation par un schéma de Bernoulli. To appear.Google Scholar
[4]Herman, M. R.. Construction d'un difféomorphisme minimal d'entropie topologique non nulle. Ergod. Th. & Dynam. Sys. 1 (1981), 65–76.CrossRefGoogle Scholar
[6]Ruelle, D.. Ergodic theory of differentiable dynamical systems. Publ. de l'IHES 50 (1980), 27–58.CrossRefGoogle Scholar
[7]Thouvenot, J. P.. Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli. Israel J. Math. 21 (1975), 177–207.Google Scholar
[8]Thouvenot, J. P.. Remarques sur les systèmes dynamiqués donnes avec plusieurs facteurs. Israel J. Math. 21 (1975), 215–232.Google Scholar
You have
Access