Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-02T20:50:29.013Z Has data issue: false hasContentIssue false

Structure de certains produits semi directs

Published online by Cambridge University Press:  19 September 2008

A. Lamotte
Affiliation:
Laboratoire de Probabilités, Associé au CNRS, n° 224, 4, Place Jussieu, Tour 56–66, 3ème étage, 75005 Paris, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the skew product of a dynamical system with a Bernoulli flow and we prove that under additional conditions this skew product is isomorphic to a direct product. We use this result to show that the minimal diffeomorphism with strictly positive entropy (constructed by M. R. Herman) is isomorphic to a direct product of a 0-entropy dynamical system with a Bernoulli shift.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

[1]Breiman, L.. Probability. Addison Wesley: Reading, Mass. (1968).Google Scholar
[2]Brin, M.. Bernoulli diffeomorphisms with n−1 non zero exponents. Ergod. Th. & Dynam. Sys. 1 (1981), 17.CrossRefGoogle Scholar
[3]Gabriel, P.. Sur la structure des extensions à deux points du produit d'une transformation par un schéma de Bernoulli. To appear.Google Scholar
[4]Herman, M. R.. Construction d'un difféomorphisme minimal d'entropie topologique non nulle. Ergod. Th. & Dynam. Sys. 1 (1981), 6576.CrossRefGoogle Scholar
[5]Ornstein, D.. Ergodic Theory, Randomness and Dynamical Systems. Yale Math., 1974.Google Scholar
[6]Ruelle, D.. Ergodic theory of differentiable dynamical systems. Publ. de l'IHES 50 (1980), 2758.CrossRefGoogle Scholar
[7]Thouvenot, J. P.. Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli. Israel J. Math. 21 (1975), 177207.Google Scholar
[8]Thouvenot, J. P.. Remarques sur les systèmes dynamiqués donnes avec plusieurs facteurs. Israel J. Math. 21 (1975), 215232.Google Scholar