Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T03:02:12.072Z Has data issue: false hasContentIssue false

Smooth chaotic maps with zero topological entropy

Published online by Cambridge University Press:  19 September 2008

M. Misiurewicz
Affiliation:
Institute of Mathematics, Warsaw University, PKiN IX p., 00-901 Warsaw, Poland
J. Smítal
Affiliation:
Institute of Mathematics, Komensky University, 842 15 Bratislava, Czechoslovakia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We find a class of C maps of an interval with zero topological entropy and chaotic in the sense of Li and Yorke.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

REFERENCES

[1]Block, L.. Stability of periodic orbits in the theorem of Šarkovskii. Proc. Amer. Math. Soc. 81 (1981), 555562.Google Scholar
[2]Collet, P. & Eckmann, J.-P.. Iterated Maps on the Interval as Dynamical Systems. Birkhauser: Boston, 1980.Google Scholar
[3]Janková, K. & Smítal, J.. A characterization of chaos. Bull. Austral. Math. Soc. 34 (1986), 283292.CrossRefGoogle Scholar
[4]Jonker, L.. Periodic orbits and kneading invariants. Proc. London Math. Soc. 39 (3) (1979), 428450.CrossRefGoogle Scholar
[5]Li, T. Y. & Yorke, J. A.. Period three implies chaos. Amer. Math. Monthly 82 (1975), 985992.CrossRefGoogle Scholar
[6]de Melo, W. & van Strien, S.. A structure theorem in one dimensional dynamics. Informes de Matématica Série A-063/86, Rio de Janeiro (preprint 1986).Google Scholar
[7]Misiurewicz, M.. Structure of mappings of an interval with zero entropy. Publ. Math. IHES 53 (1981), 516.CrossRefGoogle Scholar
[8]Misiurewicz, M. & Szlenk, W.. Entropy of piecewise monotone maps. Studia Math. 67 (1980), 4563.CrossRefGoogle Scholar
[9]Smítal, J.. Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297 (1986), 269282.CrossRefGoogle Scholar