Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T03:58:47.803Z Has data issue: false hasContentIssue false

Simultaneous equidistributing and non-dense points for non-commuting toral automorphisms

Published online by Cambridge University Press:  11 May 2018

MANFRED EINSIEDLER
Affiliation:
ETH Zürich, Departement Mathematik, Rämistrasse 101, 8092 Zürich, Switzerland email [email protected], [email protected]
ALEX MAIER
Affiliation:
ETH Zürich, Departement Mathematik, Rämistrasse 101, 8092 Zürich, Switzerland email [email protected], [email protected]

Abstract

We show in prime dimension that for two non-commuting totally irreducible toral automorphisms the set of points that equidistribute under the first map but have non-dense orbit under the second has full Hausdorff dimension. In non-prime dimension the argument fails only if the automorphisms have strong algebraic relations.

Type
Original Article
Copyright
© Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergelson, V., Einsiedler, M. and Tseng, J.. Simultaneous dense and nondense orbits for commuting maps. Israel J. Math. 210(1) (2015), 2345.10.1007/s11856-015-1244-yGoogle Scholar
Broderick, R., Fishman, L. and Kleinbock, D.. Schmidt’s game, fractals, and orbits of toral endomorphisms. Ergod. Th. & Dynam. Sys. 31(4) (2011), 10951107.10.1017/S0143385710000374Google Scholar
Chaika, J. and Eskin, A.. Every flat surface is Birkhoff and Oseledets generic in almost every direction. J. Mod. Dyn. 9 (2015), 123.Google Scholar
Dani, S. G.. On orbits of endomorphisms of tori and the Schmidt game. Ergod. Th. & Dynam. Sys. 8 (1988), 523529.10.1017/S0143385700004673Google Scholar
Einsiedler, M. and Ward, T.. Functional Analysis, Spectral Theory, and Applications (Graduate Texts in Mathematics, 276) . Springer, Cham, 2017.10.1007/978-3-319-58540-6Google Scholar
Fishman, L.. Schmidt’s games, badly approximable matrices, and fractals. J. Number Theory 129 (2009), 21332153.Google Scholar
Fishman, L.. Schmidt’s game on fractals. Israel J. Math. 171 (2009), 7792.10.1007/s11856-009-0041-xGoogle Scholar
Kleinbock, D. Y. and Margulis, G. A.. Bounded orbits of nonquasiunipotent flows on homogeneous spaces. Amer. Math. Soc. Transl. Ser. (2) 171 (1996), 141172.Google Scholar
Lytle, B. and Maier, A.. Simultaneous dense and nondense orbits for noncommuting toral endomorphisms. Monatsh. Math. 185(3) (2018), 473488.10.1007/s00605-018-1154-2Google Scholar
Schmidt, W. M.. On badly approximable numbers and certain games. Trans. Amer. Math. Soc. 123 (1966), 2750.Google Scholar