Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-29T03:59:18.314Z Has data issue: false hasContentIssue false

Positive Lyapunov exponents for a dense set of bounded measurable SL(2, ℝ)-cocycles

Published online by Cambridge University Press:  19 September 2008

Oliver Knill
Affiliation:
Mathematikdepartement, ETH Zentrum, CH-8092 Zürich, Switzerland

Abstract

Let T be an aperiodic automorphism of a standard probability space (X, m). We prove, that the set

is dense in L(X, SL(2, ℝ)).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Bag 88]Baggett, L.. On circle valued cocyles of an ergodic measure preserving transformation. Israel J. Math. 61 (1988) 2938.Google Scholar
[Chu 89]Chulaevsky, V.. Lyapunov exponents and Anderson localisation for discrete Schrödinger operators. Preprint. FIM ETH Zurich, 1989.Google Scholar
[Cor 82]Cornfeld, I. P., Fomin, S. V. & Sinai, Ya. G.. Ergodic Theory. Springer, New York, 1982.CrossRefGoogle Scholar
[Cyc 87]Cycon, H. L., Froese, R. G., Kirsch, W. & Simon, B.. Schrodinger Operators. Texts Monographs Phys., Springer, New York, 1987.Google Scholar
[Den 76]Denker, M., Grillenberg, C. & Sigmund, K.. Ergodic theory on compact spaces. Springer Lecture Notes in Math. 527 Springer, New York, 1976.Google Scholar
[Fur 63]Furstenberg, H.. Non-commuting random products. Trans. Amer. Math. Soc. 108 (1963), 377428.CrossRefGoogle Scholar
[Hal 56]Halmos, P.. Lectures on Ergodic Theory. The Mathematical Society of Japan, Tokyo, 1956.Google Scholar
[Her 83]Herman, M. R.. Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d'un théorème d' Arnold et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58 (1983) 453502.CrossRefGoogle Scholar
[Kat 86]Katok, A. & Strelcyn, J.-M.. Invariant manifolds, Entropy and Billiards: Smooth maps with Singularities. Springer Lecture Notes in Math. 1222 Springer, New York, 1986.Google Scholar
[Led 82]Ledrappier, F.. Quelques propriétès des exposants caractéristiques. Springer Lecture Notes in Math. 1097, Springer, New York, 1982.Google Scholar
[Led 84]Ledrappier, F.. Positivity of the exponents for stationary sequenes of matrices. Lecture Notes in Math. 1186, Springer, New York, 1984.Google Scholar
[Mer 85]Merrill, K.. Cohomology of step functions under irrational rotations. Israel J. Math. 52 (1985), 320340.Google Scholar
[Par 86]Paramio, M. & Sesma, J.. A continued fraction procedure to determine invariant directions in twist mappings. Phys. Lett. A 117 (1986), 333336.Google Scholar
[Pes 77]Pesin, Ya. B.. Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys 32 (1977) 55114.CrossRefGoogle Scholar
[Rag 79]Raghunathan, M. S.. A proof of Oseledec's multiplicative ergodic theorem. Israel J. of Math. 32 (1979), 356362.CrossRefGoogle Scholar
[Rue 79]Ruelle, D.. Ergodic theory of differentiable dynamical systems. Publ. Math, de 1' IHES 50 (1979), 2758.Google Scholar
[Rue 79a]Ruelle, D.. Analycity properties of the characteristic exponents of random matrix products. Adv. Math. 32 (1979), 6880.CrossRefGoogle Scholar
[Woj 85]Wojtkowski, M.. Invariant families of cones and Lyapunov exponents. Ergod. Th. Dynam. Sys. 5 (1985) 145161.Google Scholar
[Woj 86]Wojtkowski, M.. Principles forthe design of billiards with nonvanishing Lyapunov exponents. Comment. Math. Phys. 105 (1986), 391414.Google Scholar
[You 86]Young, L.-S.. Random perturbations of matrix cocycles. Ergod. Th. & Dynam. Sys. 6 (1986) 627637.Google Scholar