Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-05T02:40:47.907Z Has data issue: false hasContentIssue false

On the Cr-closing lemma for flows on the torus T2

Published online by Cambridge University Press:  19 September 2008

C. Gutierrez
Affiliation:
Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina, 110, Jardim Botânico, Rio de Janeiro, RJ CEP 22.460, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Vector fields of , 1 ≤ r ≤ ∞, with non-trivial recurrent points are classified in two types, one of which we call the constant type inspired by the terminology of continued fractions. Let have finitely many singularities and pT2 be a non-wandering point of X. With the exception of the case when X is of constant type and, simultaneously, p is non-trivial recurrent, we prove that there exists arbitrarily close to X (in the Cr-topology) having a periodic trajectory through p.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

REFERENCES

[B—S]Bhatia, N. P. & Szego, B. P.. Stability Theory of Dynamical Systems. Springer-Verlag: New York (1970).CrossRefGoogle Scholar
[Gu.1]Gutierrez, C.. Smoothing continuous flows on two-manifolds and recurrences. Ergod. Th. & Dynam. Sys. 6 (1986), 1744.CrossRefGoogle Scholar
[Gu.2]Gutierrez, C.. Structural stability for flows on the torus with a cross-cap. Trans. Amer. Math. Soc. 241 (1978), 311320.CrossRefGoogle Scholar
[Her]Herman, M.. Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations. Publ. Math. 49, 5234.CrossRefGoogle Scholar
[Khi]Khintchine, A.. Kettenbrüche, B. G., Teubner Verlagsgesellschaft, Leipzig, 1956.Google Scholar
[La]Lang, S.. Introduction to Diophantine Approximations. Addison-Wesley Publishing Company, 1966.Google Scholar
[Ma]Mañé, R.. An ergodic closing lemma. Ann. of Math. 116 (1982), 503541.CrossRefGoogle Scholar
[Ne]Neumann, D.. Smoothing continuous flows on 2-manifolds. Jour. Diff. Eq. 28, No. 3 (1978), 327344.CrossRefGoogle Scholar
[Pa—Me]Palis, J. & de Melo, W.. Geometric Theory of Dynamical Systems. Springer-Verlag: New York (1982).CrossRefGoogle Scholar
[Pe]Peixoto, M.. Structural stability on two-dimensional manifolds. Topology 1 (1962), 101120.CrossRefGoogle Scholar
[Px]Pixton, D.. Planar homoclinic points. J. Diff. Eq. 44 (1982), No. 3, 365382.CrossRefGoogle Scholar
[Pg.1]Pugh, C.. Against the C2 closing lemma. Jour. Diff. Eq. 17 (1975), 435443.CrossRefGoogle Scholar
[Pg.2]Pugh, C.. An improved closing lemma and general density theorem. Amer. J. Math. 89 (1967), 10101021.CrossRefGoogle Scholar
[SI]Slater, N. B.. Gaps and steps for the sequence nθ mod 1, Proc. Camb. Phil. Soc. 63 (1967), 11151123.CrossRefGoogle Scholar
[S—T]Schwartz, A. J. & Thomas, E. S.. The depth of the center of 2-manifolds. In Global Anal. Proc. Symp. Pure Math. 14, Amer. Math. Soc.: Providence, R.I., pp. 253264 (1970).Google Scholar
[Ta]Takens, F.. Homoclinic points in conservative systems. Invent. Math. 18 (1972), 267292.CrossRefGoogle Scholar
[Wa]Walters, P.. Ergodic Theory – Introductory Lectures. Springer-Verlag, 1975.CrossRefGoogle Scholar
[Wt]Whitney, H.. Regular families of curves. Ann. of Math. (2), 34 (1933), 244270.CrossRefGoogle Scholar