Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T03:49:30.897Z Has data issue: false hasContentIssue false

Matings of quadratic polynomials

Published online by Cambridge University Press:  19 September 2008

Tan Lei
Affiliation:
Laboratoire de Mathématiques, Ecole Normale Supérieure de Lyon, 46 allée d'ltalie, 69364Lyon cedex 07, France

Abstract

We apply Thurston's equivalence theory between dynamical systems of post-critically finite branched coverings and rational maps, to try to construct, from a pair of polynomials, a rational map. We prove that given two post-critically finite quadratic polynomials fc: zz2+c and fc:zz2+c′, one can get a rational map if and only if c, c′ are not in conjugate limbs of the Mandelbrot set.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[D]Douady, A.. Systèmes dynamiques holomorphes. Séminaire Bourbaki 599 (1982).Google Scholar
[DH1]Douady, A. & Hubbard, J. H.. Etude dynamique des polynômes complexes I et II, avec la collaboration de P. Lavaurs, Tan Lei et P. Sentenac. Publ. Math. d'Orsay 8402 (1984), 85–04 (1985).Google Scholar
[DH2]Douady, A. & Hubbard, J. H.. A proof of Thurston's topological characterization of rational functions. Preprint, Institut Mittag-Leffler.Google Scholar
[G]Gantmacher, F. R.. Matrix theory. Chelsea Publishing Company, New York 1960.Google Scholar
[H]Hirsch, M. W.. Differential Topology. Springer Verlag, Berlin, 1976.CrossRefGoogle Scholar
[La]Lavaurs, P.. Une description combinatoire de l'induction définie par M sur les rationnels à denominateur impair. C. R. Acad. Sc. Paris 303, Série I, no. 4 (1986)Google Scholar
[Le]Levy, S.. Critically finite rational maps. PhD Thesis. Princeton University. Princeton, USA, 1985.Google Scholar
[R1]Rees, M.. A partial description of parameter space of rational maps of degree two: Part I. Preprint, University of Liverpool, UK (1990), Acta Math., to appear.Google Scholar
[R2]Rees, M.. A partial description of parameter space of rational maps of degree two: Part II. Preprint SUNY at Stony Brook, USA (1991).Google Scholar
[R3]Rees, M.. Realization of matings of polynomials as rational maps of degree two. Unpublished manuscript (1986).Google Scholar
[S]Shishikura, M.. On a theorm of M. Rees for matings of polynomials. Preprint, IHES. Bures-sur- Yvette, France (1990).Google Scholar
[ST]Shishikura, M. & Tan, Lei. A family of cubic rational maps and matings of cubic polynomials. Preprint of Max-Planck-Institut für Mathematik. Bonn, Germany 88–50 (1988).Google Scholar
[TA1]Tan, Lei. Accouplements des polynômes quadratiques complexes. C. R. Acad. Sc. Paris 302, Série I, no. 17 (1986), 635638.Google Scholar
[Ta2]Tan, Lei. Accouplements des polynômes complexes. Thése de doctorat de l'Universite de Paris-Sud. Orsay, France (1987).Google Scholar
[Th]Thurston, W.. The combinatorics of iterated rational maps. Preprint, Princeton University, Princeton, USA (1985).Google Scholar
[W]Wittner, B.. On the bifurcation loci of rational maps of degree two. PhD Thesis. Cornell University. Ithaca, USA (1986).Google Scholar
[Y]Yoccoz, J.-C.. Sur la taille des membres de l'ensemble de Mandelbrot. Unpublished manuscript (1986).Google Scholar