Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-05T02:21:19.678Z Has data issue: false hasContentIssue false

Homoclinic tangencies: moduli and topology of separatrices

Published online by Cambridge University Press:  19 September 2008

Rense A. Posthumus
Affiliation:
PO Box 800, 9700 AV Groningen, The Netherlands
Floris Takens
Affiliation:
PO Box 800, 9700 AV Groningen, The Netherlands

Extract

We consider two-dimensional diffeomorphisms φ: MM. For a fixed point p, i.e., pM and φ(p) = p, we say that q is homoclinic to p if pq and if both limi→+∞φi(q) and limi→−∞φi(q) are equal to p.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[B,1935]Birkhoff, G. D.. Nouvelles recherches sur les systèmes dynamiques. Mem. Pont. Acad. Novi. Lyncaei 1 (1935), 85216.Google Scholar
[H,1960]Hartman, P.. On local homeomorphisms of Euclidean spaces. Bol. Soc. Mat. Mexicana 5 (1960), 220241.Google Scholar
[MS,1987]Melo, W. de & van Strien, S. J.. Diffeomorphisms on surfaces with a finite number of moduli. Ergod. Th. and Dynam. Sys. 7 (1987), 415462.CrossRefGoogle Scholar
[NPT,1983]Newhouse, S., Palis, J. & Takens, F.. Bifurcations and stability of diffeomorphisms. Publ. Math. IHES 57 (1983), 571.CrossRefGoogle Scholar
[P,1890]Poincaré, H.. Sur le problème des trois corps et les équations de la dynamique (Mémoir couronné du prix de S.M. le roi Oscar II de Suède). Acta Math. 13 (1890), 1270.Google Scholar
[P,1978]Palis, J.. A differentiable invariant of topological conjugacies and moduli of stability. Astérisque 51 (1978), 335346.Google Scholar
[P,1989]Posthumus, R. A.. Homoclinic points and moduli. Ergod. Th. and Dynam. Sys. 9 (1989), 389398.CrossRefGoogle Scholar
[PT,1987]Palis, J. & Takens, F.. Hyperbolicity and the creation of homoclinic orbits. Ann. Math. 125 (1987), 337374.CrossRefGoogle Scholar
[PT,1992]Palis, J. & Takens, F.. Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations. Cambridge University Press: Cambridge, to appear.Google Scholar
[S,1958]Sternberg, S.. On the structure of local homeomorphisms of Euclidean n-space, II. Amer. J. Math. 80 (1958), 623631.CrossRefGoogle Scholar
[S,1967]Smale, S.. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747817.CrossRefGoogle Scholar