Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T04:19:06.478Z Has data issue: false hasContentIssue false

Dimension of harmonic measures in hyperbolic spaces

Published online by Cambridge University Press:  02 May 2017

RYOKICHI TANAKA*
Affiliation:
Mathematical Institute, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan email [email protected]

Abstract

We show the exact dimensionality of harmonic measures associated with random walks on groups acting on a hyperbolic space under a finite first moment condition, and establish the dimension formula by the entropy over the drift. We also treat the case when a group acts on a non-proper hyperbolic space acylindrically. Applications of this formula include continuity of the Hausdorff dimension with respect to driving measures and Brownian motions on regular coverings of a finite volume Riemannian manifold.

Type
Original Article
Copyright
© Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arveson, W.. An Invitation to C -Algebras (Graduate Texts in Mathematics, 39) . Springer, New York, 1976.Google Scholar
Assouad, P.. Plongements lipschitziens dans ℝ n . Bull. Soc. Math. France 111(4) (1983), 429448.Google Scholar
Bridson, M. R. and Haefliger, A.. Metric Spaces of Non-Positive Curvature (Grundlehren der Mathematischen Wissenschaften, 319) . Springer, Berlin, 1999.Google Scholar
Blachère, S., Haissinsky, P. and Mathieu, P.. Harmonic measures versus quasiconformal measures for hyperbolic groups. Ann. Sci. Éc. Norm. Supér. 44(4) (2011), 683721.Google Scholar
Bárány, B. and Käenmäki, A.. Ledrappier–Young formula and exact dimensionality of self-affine measures. Preprint, 2015, arXiv:1511.05792.Google Scholar
Ballmann, W. and Ledrappier, F.. Discretization of positive harmonic functions on Riemannian manifolds and Martin boundary. Actes de la Table Ronde de Géometrie Différentielle (Luminy, 1992) (Séminaires et Congrès, 1) . Société Mathématique de France, Paris, 1996, pp. 7792.Google Scholar
Barreira, L., Pesin, Y. and Schmeling, J.. Dimension and product structure of hyperbolic measures. Ann. of Math. (2) 149(3) (1999), 755783.Google Scholar
Bonk, M. and Schramm, O.. Embeddings of Gromov hyperbolic spaces. Geom. Funct. Anal. 10(2) (2000), 266306.Google Scholar
Coornaert, M.. Mesures de Patterson–Sullivan sur le bord d’un espace hyperbolique au sens de Gromov. Pacific J. Math. 159(2) (1993), 241270.Google Scholar
Derriennic, Y.. Quelques applications du théorème ergodique sous-additif. Conference on Random Walks (Kleebach, 1979) (Astérisque, 74) . Société Mathématique de France, Paris, 1980, pp. 183201.Google Scholar
Das, T., Simmons, D. and Urbański, M.. Geometry and dynamics in Gromov hyperbolic metric spaces with an emphasis on non-proper settings. Mathematical Surveys and Monographs. American Mathematical Society, 2017, in press.Google Scholar
Erschler, A. and Kaimanovich, V. A.. Continuity of asymptotic characteristics for random walks on hyperbolic groups. Funct. Anal. Appl. 47(2) (2013), 152156.Google Scholar
Feng, D.-J. and Hu, H.. Dimension theory of iterated function systems. Commun. Pure Appl. Math. 62 (2009), 14351500.Google Scholar
Furstenberg, H.. Random walks and discrete subgroups of Lie groups. Advances in Probability and Related Topics. 1 Dekker, New York, 1971, pp. 163.Google Scholar
Ghys, E. and de la Harpe, P.. Sur les groupes hyperboliques d’après Mikhael Gromov (Progress in Mathematics, 83) . Birkhäuser, Boston, MA, 1990.Google Scholar
Gilch, L. and Ledrappier, F.. Regularity of the drift and entropy of random walks on groups. Publ. Mat. Urug. 14 (2013), 147158.Google Scholar
Gouëzel, S., Mathéus, F. and Maucourant, F.. Entropy and drift in word hyperbolic groups. Preprint, 2015, arXiv:1501.05082v1.Google Scholar
Gouëzel, S.. Analyticity of the entropy and the escape rate of random walks in hyperbolic groups. Preprint, 2015, arXiv:1509.06859v1.Google Scholar
Gromov, M.. Hyperbolic groups. Essays in Group Theory (Mathematical Sciences Research Institute Publications, 8) . Ed. Gersten, S. M.. Springer, New York, 1987, pp. 75263.Google Scholar
Guivarc’h, Y.. Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire. Conference on Random Walks (Kleebach, 1979) (Astérisque, 74) . Société Mathématique de France, Paris, 1980, pp. 4798.Google Scholar
Heinonen, J.. Lectures on Analysis on Metric Spaces (Universitext) . Springer, New York, 2001.Google Scholar
Hochman, M.. On self-similar sets with overlaps and inverse theorems for entropy. Ann. of Math. (2) 180(2) (2014), 773822.Google Scholar
Hochman, M. and Solomyak, B.. A talk at Israel Institute for Advanced Studies (Ergodic Theory, Fractals and Groups), October 2015.Google Scholar
Kaimanovich, V. A.. The Poisson formula for groups with hyperbolic properties. Ann. of Math. (2) 152(3) (2000), 659692.Google Scholar
Kaimanovich, V. A.. Brownian motion and harmonic functions on covering manifolds. An entropy approach. Sov. Math. Dokl. 33(3) (1986), 812816.Google Scholar
Kaimanovich, V. A.. Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds. Ann. Inst. H. Poincaré Phys. Théor. 53(4) (1990), 361393.Google Scholar
Kaimanovich, V. A.. Discretization of bounded harmonic functions on Riemannian manifolds and entropy. Potential Theory (Nagoya, 1990). de Gruyter, Berlin, 1992, pp. 213223.Google Scholar
Kaimanovich, V. A.. Hausdorff dimension of the harmonic measure on trees. Ergod. Th. & Dynam. Sys. 18(3) (1998), 631660.Google Scholar
Kapovich, I. and Benakli, N.. Boundaries of Hyperbolic Groups (Contemporary Mathematics, 296) . American Mathematical Society, Providence, RI, 2002, pp. 3993.Google Scholar
Karlsson, A. and Ledrappier, F.. Propriété de Liouville et vitesse de fuite du mouvement brownien. C. R. Math. Acad. Sci. Paris 344(11) (2007), 685690.Google Scholar
Kifer, Y. and Ledrappier, F.. Hausdorff dimension of harmonic measures on negatively curved manifolds. Trans. Amer. Math. Soc. 318(2) (1990), 685704.Google Scholar
Kaimanovich, V. A. and Le Prince, V.. Matrix random products with singular harmonic measure. Geom. Dedicata 150 (2011), 257279.Google Scholar
Kaimanovich, V. A. and Vershik, A. M.. Random walks on discrete groups: boundary and entropy. Ann. Probab. 11(3) (1983), 457490.Google Scholar
Ledrappier, F.. Some Asymptotic Properties of Random Walks on Free Groups (CRM Proceedings & Lecture Notes, 28) . American Mathematical Society, Providence, RI, 2001, pp. 117152.Google Scholar
Ledrappier, F.. Une relation entre entropie, dimension et exposant pour certaines marches aléatoires. C. R. Acad. Sci. Paris Sér. I Math. 296(8) (1983), 369372.Google Scholar
Le Prince, V.. Dimensional properties of the harmonic measure for a random walk on a hyperbolic group. Trans. Amer. Math. Soc. 359(6) (2007), 28812898.Google Scholar
Le Prince, V.. A relation between dimension of the harmonic measure, entropy and drift for a random walk on a hyperbolic space. Electron. Commun. Probab. 13 (2008), 4553.Google Scholar
Lyons, T. and Sullivan, D.. Function theory, random paths and covering spaces. J. Differential Geom. 19(2) (1984), 299323.Google Scholar
Ledrappier, F. and Young, L.-S.. The metric entropy of diffeomorphisms. Part II: relations between entropy, exponents and dimension. Ann. of Math. (2) 122(3) (1985), 540574.Google Scholar
Mostow, G. D.. Strong Rigidity of Locally Symmetric Spaces (Annals of Mathematics Studies, 78) . Princeton University Press, Princeton, NJ, 1973.Google Scholar
Mathieu, P. and Sisto, A.. Deviation inequalities and CLT for random walks on acylindrically hyperbolic groups. Preprint, 2015, arXiv:1411.7865v2.Google Scholar
Mauldin, R. D., Szarek, T. and Urbański, M.. Graph directed Markov systems on Hilbert spaces. Math. Proc. Cambridge Philos. Soc. 147(2) (2009), 455488.Google Scholar
Maher, J. and Tiozzo, G.. Random walks on weakly hyperbolic groups. J. Reine Angew Math. (2017), to appear.Google Scholar
Osin, D.. Acylindrically hyperbolic groups. Trans. Amer. Math. Soc. 368(2) (2016), 851888.Google Scholar
Pesin, Y. B.. Dimension Theory in Dynamical Systems (Chicago Lectures in Mathematics) . University of Chicago Press, Chicago, IL, 1997.Google Scholar
Przytycki, F. and Urbański, M.. Conformal Fractals: Ergodic Theory Methods (London Mathematical Society Lecture Note Series, 371) . Cambridge University Press, Cambridge, UK, 2010.Google Scholar
Rohlin, V. A.. On the fundamental ideas of measure theory. Amer. Math. Soc. Trans. 1952(71) (1952), 154.Google Scholar
Simmons, D.. Conditional measures and conditional expectation; Rohlin’s disintegration theorem. Discrete Contin. Dyn. Syst. 32(7) (2012), 25652582.Google Scholar
Tanaka, R.. Hausdorff spectrum of harmonic measure. Ergod. Th. & Dynam. Sys. 37(1) (2017), 277307.Google Scholar
Väisälä, J.. Gromov hyperbolic spaces. Expo. Math. 23(3) (2005), 187231.Google Scholar
Young, L.-S.. Dimension, entropy and Lyapunov exponents. Ergod. Th. & Dynam. Sys. 2 (1982), 109124.Google Scholar