Article contents
A dichotomy for bounded displacement equivalence of Delone sets
Published online by Cambridge University Press: 18 June 2021
Abstract
We prove that in every compact space of Delone sets in ${\mathbb {R}}^d$ , which is minimal with respect to the action by translations, either all Delone sets are uniformly spread or continuously many distinct bounded displacement equivalence classes are represented, none of which contains a lattice. The implied limits are taken with respect to the Chabauty–Fell topology, which is the natural topology on the space of closed subsets of ${\mathbb {R}}^d$ . This topology coincides with the standard local topology in the finite local complexity setting, and it follows that the dichotomy holds for all minimal spaces of Delone sets associated with well-studied constructions such as cut-and-project sets and substitution tilings, whether or not finite local complexity is assumed.
- Type
- Original Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
- 4
- Cited by