Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T03:11:47.366Z Has data issue: false hasContentIssue false

A classification of the isometric extensions of a multidimensional Bernoulli shift

Published online by Cambridge University Press:  19 September 2008

Janet Whalen Kammeyer
Affiliation:
Department of Mathematics, United States Naval Academy, Annapolis, MD 21402, USA

Abstract

The isometric extensions of a multidimensional Bernouli shift are classified completely, up to C-isomorphism, and up to isomorphism. If such an extension is weakly mixing then it must be Bernoulli; otherwise, it has a rotation factor, which has a Bernoulli complementary algebra. This result is extended to multidimensional Bernoulli flows and Bernoulli shifts of infinite entropy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Kammeyer, J. W.. A complete classification of the two-point extensions of a multidimensional Bernoulli shift. J. Analyse Math. 54 (1990), 113164.CrossRefGoogle Scholar
[2]Kammeyer, J. W.. A classification of the finite extensions of a multidimensional Bernoulli shift. Trans. Amer. Math. Soc. to appear.Google Scholar
[3]Ornstein, D. & Weiss, B.. Entropy and isomorphism theorems for actions of amenable groups. J. Analyse Math. 48 (1987), 1141.CrossRefGoogle Scholar
[4]Rudolph, D. J.. Classifying the isometric extensions of a Bernoulli shift. J. Analyse Math. 34 (1978), 3660.CrossRefGoogle Scholar
[5]Rudolph, D. J.. Fundamentals of Measurable Dynamics. (Oxford University Press: New York, 1990).Google Scholar
[6]Thouvenot, J. P.. Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schema de Bernoulli. Israel J. Math. 21 (1975), 177207.CrossRefGoogle Scholar
[7]Thouvenot, J. P.. Une classe de systèmes pour lesquels la conjecture de Pinsker est vraie. Israel J. Math. 21 (1975), 208214.Google Scholar