Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T04:36:16.818Z Has data issue: false hasContentIssue false

On the Aubry–Mather theory for symbolic dynamics

Published online by Cambridge University Press:  01 June 2008

E. GARIBALDI
Affiliation:
Institut de Mathématiques, Université Bordeaux 1, F-33405 Talence, France (email: [email protected])
A. O. LOPES
Affiliation:
Instituto de Matemática, UFRGS, 91509-900 Porto Alegre, Brazil (email: [email protected])

Abstract

We propose a new model of ergodic optimization for expanding dynamical systems: the holonomic setting. In fact, we introduce an extension of the standard model used in this theory. The formulation we consider here is quite natural if one wants a meaning for possible variations of a real trajectory under the forward shift. In other contexts (for twist maps, for instance), this property appears in a crucial way. A version of the Aubry–Mather theory for symbolic dynamics is introduced. We are mainly interested here in problems related to the properties of maximizing probabilities for the two-sided shift. Under the transitive hypothesis, we show the existence of sub-actions for Hölder potentials also in the holonomic setting. We analyze then connections between calibrated sub-actions and the Mañé potential. A representation formula for calibrated sub-actions is presented, which drives us naturally to a classification theorem for these sub-actions. We also investigate properties of the support of maximizing probabilities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bangert, V.. Mather sets for twist maps and geodesics on tori. Dynamics Reported 1 (1988), 156.CrossRefGoogle Scholar
[2]Baraviera, A., Lopes, A. O. and Thieullen, P.. A large deviation principle for equilibrium states of Holder potentials: the zero temperature case. Stoch. Dyn. 6 (2006), 7796.CrossRefGoogle Scholar
[3]Bousch, T.. Le poisson n’a pas d’arêtes. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000), 489508.CrossRefGoogle Scholar
[4]Bousch, T.. La condition de Walters. Ann. Sci. École Norm. Sup. (4) 34 (2001), 287311.CrossRefGoogle Scholar
[5]Bousch, T.. Un lemme de Mañé bilatéral. C. R. Math. Acad. Sci. Paris 335 (2002), 533536.Google Scholar
[6]Contreras, G.. Action potential and weak KAM solutions. Calc. Var. Partial Differential Equations 13 (2001), 427458.CrossRefGoogle Scholar
[7]Contreras, G. and Iturriaga, R.. Global minimizers of autonomous Lagrangians. 22 Colóquio Brasileiro de Matemática. IMPA, 1999.Google Scholar
[8]Contreras, G., Iturriaga, R., Paternain, G. P. and Paternain, M.. Lagrangian graphs, minimizing measures and Mañé’s critical values. Geom. Funct. Anal. 8 (1998), 788809.CrossRefGoogle Scholar
[9]Contreras, G., Lopes, A. O. and Thieullen, P.. Lyapunov minimizing measures for expanding maps of the circle. Ergod. Th. & Dynam. Sys. 21 (2001), 13791409.CrossRefGoogle Scholar
[10]Conze, J. P. and Guivarc’h, Y.. Croissance des sommes ergodiques et principe variationnel. Technical Report, Université de Rennes 1, 1993.Google Scholar
[11]Fathi, A.. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris, Sér. I, Math. 324 (1997), 10431046.CrossRefGoogle Scholar
[12]Garibaldi, E.. Otimização ergódica: da maximização relativa aos homeomorfismos expansivos. PhD Thesis, Universidade Federal do Rio Grande do Sul, 2006.Google Scholar
[13]Garibaldi, E. and Lopes, A. O.. Functions for relative maximization. Preprint, 2006.Google Scholar
[14]Garibaldi, E., Lopes, A. O. and Thieullen, P.. On separating sub-actions. Preprint, 2006.Google Scholar
[15]Gomes, D. A.. Viscosity solution method and the discrete Aubry–Mather problem. Discrete Contin. Dyn. Syst. Ser. A 13 (2005), 103116.CrossRefGoogle Scholar
[16]Hunt, B. R. and Yuan, G. C.. Optimal orbits of hyperbolic systems. Nonlinearity 12 (1999), 12071224.Google Scholar
[17]Jenkinson, O.. Ergodic optimization. Discrete Contin. Dyn. Syst. Ser. A 15 (2006), 197224.CrossRefGoogle Scholar
[18]Jenkinson, O.. Every ergodic measure is uniquely maximizing. Discrete Contin. Dyn. Syst. Ser. A 16 (2006), 383392.CrossRefGoogle Scholar
[19]Lopes, A. O. and Thieullen, P.. Sub-actions for Anosov diffeomorfisms. Astérisque 287 (2003), 135146.Google Scholar
[20]Lopes, A. O. and Thieullen, P.. Mather measures and the Bowen–Series transformation. Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), 663682.CrossRefGoogle Scholar
[21]Mañé, R.. Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9 (1996), 273310.CrossRefGoogle Scholar
[22]Oliveira, E. R.. Propriedades genéricas de lagrangianos e problemas variacionais holonômicos em sistemas de funções iteradas. PhD Thesis (Preliminary Version), Universidade Federal do Rio Grande do Sul, 2007.Google Scholar
[23]Parry, W. and Pollicott, M.. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–188 (1990), 1268.Google Scholar
[24]Radu, L.. Duality in thermodynamic formalism. Preprint, 2004.Google Scholar