Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T00:21:04.745Z Has data issue: false hasContentIssue false

Local analytic integrability for nilpotent centers

Published online by Cambridge University Press:  22 September 2003

JAVIER CHAVARRIGA
Affiliation:
Departament de Matemàtica, Universitat de Lleida, Av. Jaume II, 69, 25001 Lleida, Spain (e-mail: [email protected], [email protected])
HECTOR GIACOMIN
Affiliation:
Laboratoire de Mathématique et Physique Théorique, CNRS(UMR 6083), Faculté des Sciences et Techniques, Université de Tours, Parc de Grandmont, 37200 Tours, France (e-mail: [email protected]–tours.fr)
JAUME GINÉ
Affiliation:
Departament de Matemàtica, Universitat de Lleida, Av. Jaume II, 69, 25001 Lleida, Spain (e-mail: [email protected], [email protected])
JAUME LLIBRE
Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain (e-mail: [email protected])

Abstract

Let X(x,y) and Y(x,y) be real analytic functions without constant and linear terms defined in a neighborhood of the origin. Assume that the analytic differential system \dot{x}=y+ X(x,y), \dot{y}=Y(x,y) has a nilpotent center at the origin. The first integrals, formal or analytic, will be real except if we say explicitly the converse. We prove the following.

  1. If X= y f(x,y^2) and Y= g(x,y^2), then the systemhas a local analytic first integral of the form H=y^2+F(x,y),where F starts with terms of order higher than two.

  2. If the system has a formal first integral, then it hasa formal first integral of the form H=y^2+F(x,y), where Fstarts with terms of order higher than two. In particular, if thesystem has a local analytic first integral defined at the origin,then it has a local analytic first integral of the formH=y^2+F(x,y), where F starts with terms of order higher than two.

  3. As an application we characterize the nilpotent centersfor the differential systems \dot{x}=y+P_3(x,y),\dot{y}=Q_3(x,y), which have a local analytic first integral,where P_3 and Q_3 are homogeneous polynomials of degree three.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)