Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T04:30:51.300Z Has data issue: false hasContentIssue false

Analyticity and metric transitivity on the torus

Published online by Cambridge University Press:  01 June 1998

SOL SCHWARTZMAN
Affiliation:
Department of Mathematics, University of Rhode Island, Kingston, RI, USA

Abstract

Suppose we are given an analytic divergence free vector field $(X,Y)$ on the standard torus. We can find constants $a$ and $b$ and a function $F(x,y)$ of period one in both $x$ and $y$ such that $(X,Y)=(a-F_y,b+F_x)$. For a given $F$, let $P$ be the map sending $(x,y)$ into $(F_y(x,y),-F_x(x,y))$. Let $A$ be the image of the torus under this map and let $B$ be the image under this map of the set of points $(x,y)$ at which $F_{xx}F_{yy}-(F_{xy})^2$ vanishes. For any point $(a,b)$ in the complement of the interior of $A$, the flow on the torus arising from the differential equations $dx/dt=a-F_y(x,y)$, $dy/dt=b+F_x(x,y)$ is metrically transitive if and only if $a/b$ is irrational. For any point in $A$ but not in $B$ the flow is not metrically transitive. Moreover, if $a/b$ is irrational but the flow on the torus is not metrically transitive and we use our differential equations to define a flow in the entire plane (rather than on the torus), this flow has a nonstationary periodic orbit. It is an open question whether a point $(a,b)$ in the interior of $A$ can give rise to a metrically transitive flow.

Type
Research Article
Copyright
© 1998 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)