Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T13:14:15.278Z Has data issue: false hasContentIssue false

COMPARATIVE ANATOMY OF CALOLISIANTHUS SPECIES (GENTIANACEAE – HELIEAE) FROM BRAZIL: TAXONOMIC ASPECTS

Published online by Cambridge University Press:  03 March 2011

M. N. Delgado
Affiliation:
Universidade Federal de Viçosa, Departamento de Biologia Vegetal, Campus Universitário, 36570-000, Viçosa-MG, Brazil.
A. A. Azevedo
Affiliation:
Universidade Federal de Viçosa, Departamento de Biologia Vegetal, Campus Universitário, 36570-000, Viçosa-MG, Brazil.
L. C. Silva
Affiliation:
Universidade Federal de Viçosa, Departamento de Biologia Vegetal, Campus Universitário, 36570-000, Viçosa-MG, Brazil.
G. E. Valente
Affiliation:
Universidade Federal de Viçosa, Departamento de Biologia Vegetal, Campus Universitário, 36570-000, Viçosa-MG, Brazil.
M. C. M. Kasuya
Affiliation:
Universidade Federal de Viçosa, Departamento de Microbiologia, Campus Universitário, 36570-000, Viçosa-MG, Brazil.
Get access

Abstract

This work aims to characterise the morphology and anatomy of roots, stems and leaves of Calolisianthus species (Gentianaceae – Helieae) to assist in the taxonomy and understanding of some adaptive responses to high luminosity, prolonged water deficit and nutritional stress in their environment. Samples of Calolisianthus speciosus and C. pendulus were collected in campo rupestre (rocky land) and samples of C. amplissimus were collected in cerrado (savanna) areas in southeastern Brazil. The roots have a cortex with Arum-type arbuscular mycorrhizae. The three species have winged and square stems and in Calolisianthus amplissimus the stem is hollow. Calolisianthus pendulus and C. speciosus have a pair of conspicuous extrafloral nectaries at the leaf base, which are absent in C. amplissimus. Calolisianthus pendulus has a dorsiventral mesophyll and a round leaf margin with parenchymatic cells. Calolisianthus amplissimus has a homogeneous mesophyll and a leaf margin with collenchyma. Calolisianthus speciosus leaves have a homogeneous mesophyll and a margin with sclerenchyma and collenchyma. Our results demonstrate that some anatomical characters are useful for the identification of Calolisianthus species and might be used to elucidate evolutionary relationships among Calolisianthus and their adaptive responses.

Type
Articles
Copyright
Copyright © Trustees of the Royal Botanic Garden Edinburgh 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashton, P. M. & Berlyn, G. P. (1992). Leaf adaptations of some Shorea species to sun and shade. New Phytol. 121: 587596.CrossRefGoogle Scholar
Balduino, A. P. C., Souza, A. L., Meira-Neto, J. A. A., Silva, A. F. & Silva JÚnior, M. C. (2005). Fitossociologia e análise comparativa da composição florística do cerrado da flora de Paraopeba-MG. Rev. Árvore 29(1): 2534.CrossRefGoogle Scholar
Berlyn, G. P. & Miksche, J. P. (1976). Botanical Microtechnique and Cytochemistry. Ames, IA: Iowa State Press.CrossRefGoogle Scholar
Bozzola, J. J. & Russel, L. D. (1992). Electron Microscopy. Boston: Jones and Bartlett Publishers.Google Scholar
Castro, N. M. & Menezes, N. L. (1995). Aspectos da anatomia foliar de algumas species de Paepalunthus Kunth, Eriocaulaceae da Serra do Cipó (Minas Gerais). Acta Bot. Brasil. 9(2): 213229.CrossRefGoogle Scholar
Delgado, M. N., Azevedo, A. A., Valente, G. E. V. & Kasuya, M. C. M. (2009). Caracterização morfoanatômica comparada de especies da subtribo Coutoubeinae (Chironieae – Gentianaceae). Acta Bot. Brasil. 23(4): 956967.CrossRefGoogle Scholar
Dell, B. (1977). Distribution and function of resin and glandular hairs in western Australian plants. J. & Proc. Roy. Soc. Western Australia 59: 119123.Google Scholar
Demuth, K. & Weber, H. C. (1990). Strukturelle inkompatibilität der vesicular-arbuskulären Mycorrhizapilze in Enzianen (Gentianaceae). Angew. Bot. 64: 247252.Google Scholar
Detmann, K. S. C., Delgado, M. N., Rebello, V. P. A., Leite, T. S., Azevedo, A. A., Kasuya, M. C. M. & Almeida, A. M. (2008). Comparação de métodos para a observação de fungos micorrízicos arbusculares e endofíticos do tipo dark septate em espécies nativas de cerrado. Rev. Bras. Ciênc. Solo 32: 18831890.CrossRefGoogle Scholar
Dickison, W. C. (2000). Integrative Plant Anatomy. New York: Harcourt Academic Press.Google Scholar
Erxu, P. I., Qiufa, P., Hongfei, L., Jingbo, S., Yueqiang, D., Feilai, H. & Hui, H. (2009). Leaf morphology and anatomy of Camellia section Camellia (Theaceae). Bot. J. Linn. Soc. 159: 456476.CrossRefGoogle Scholar
Evert, R. F. (2006). Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development, 3rd edition. Hoboken, NJ: John Wiley & Sons Inc.CrossRefGoogle Scholar
Fahn, A. (1979). Secretory Tissues in Plants. London: Academic Press.Google Scholar
Furley, P. A. (1999). The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrado. Global Ecol. Biogeogr. 8: 223241.CrossRefGoogle Scholar
Furley, P. A. & Ratter, J. A. (1988). Soil resources and plant communities of the central Brazilian cerrado and their development. J. Biogeogr. 15: 97108.CrossRefGoogle Scholar
Giulietti, A. M. & Pirani, J. R. (1988). Patterns of geographic distribution of some plant species from the Espinhaço Range, Minas Gerais and Bahia, Brasil. In: Heyer, W. R. & Vanzolini, P. E. (eds) Proceedings of a Workshop on Neotropical Distribution Patterns. Rio de Janeiro: Academia Brasileira de Ciências.Google Scholar
Giulietti, A. M., Menezes, N. L., Pirani, J. R., Meguro, M. & Wanderley, M. G. L. (1987). Flora da Serra do Cipó, Minas Gerais: caracterização e lista das espécies. Bol. Bot. Univ. São Paulo 9: 1115.Google Scholar
Giulietti, A. M., Pirani, J. R. & Harley, R. (1997). Espinhaço Range region, eastern Brazil. In: Davis, S. D., Heywood, V. H., Herrera-MacBryde, O., Villa-Lobos, J. & Hamilton, A. C. (eds) Centres of Plant Diversity, Vol. 3. Cambridge, UK: IUCN Publications.Google Scholar
Gottsberger, G. & Silberbauer-Gottsberger, I. (2006). Life in the Cerrado: A South American Tropical Seasonal Ecosystem. Vol. I – Origin, Structure, Dynamics and Plant Use. Ulm: Reta Verlag.Google Scholar
Haridasan, M. (2000). Nutrição mineral das plantas nativas do Cerrado. Rev. Bras. Fisiol. Veg. 12: 5464.Google Scholar
Herrman, S., Oelmméller, R. & Buscot, F. (2004). Manipulation of the onset of ectomycorrhyza formation by indole-3-acetic acid, activated charcoal or relative humidity in the association between oak micronuttines and Piloderma croceum influence on plant development and photosynthesis. J. Pl. Physiol. 161: 509517.CrossRefGoogle Scholar
Imhof, S. (1999). Root morphology, anatomy and mycotrophy of the achlorophyllous Voyria aphylla (Jacq.) Pers. (Gentianaceae). Mycorrhiza 9: 3339.CrossRefGoogle Scholar
Johansen, D. A. (1940). Plant Microtechnique. New York: McGraw-Hill Book Co.Google Scholar
Karnovsky, M. J. (1965). A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol. 27: 137138.Google Scholar
Klein, D. E., Gomes, V. M., Silva-Neto, S. J. & Da Cunha, M. (2004). The structure of colleters in several species of Simira (Rubiaceae). Ann. Bot. 94: 733740.CrossRefGoogle ScholarPubMed
Kocsis, M., Darók, J. & Borhidi, A. (2004). Comparative leaf anatomy and morphology of some neotropical Rondeletia (Rubiaceae) species. Pl. Syst. Evol. 248: 205218.CrossRefGoogle Scholar
Maia, V. (1979). Técnica histológica. São Paulo: Atheneu.Google Scholar
Matias, L. Q., Soares, A. & Scatena, V. L. (2008). Anatomy of Echinodorus (Alismataceae) scapes from Northeastern Brazil as applied to taxonomy. Edinburgh J. Bot. 65(1): 1121.CrossRefGoogle Scholar
Meszaros, S. & De Laet, J. E. S. (1996). Phylogeny of temperate Gentianaceae: a morphological approach. Syst. Bot. 21: 153168.CrossRefGoogle Scholar
Metcalfe, C. F. & Chalk, L. (1950). Anatomy of the Dicotyledons: Leaves, Stem and Wood in Relation to Taxonomy with Notes on Economic Uses. Oxford: Clarendon Press.Google Scholar
Metcalfe, C. F. & Chalk, L. (1979). Anatomy of the Dicotyledons: Systematic Anatomy of the Leaf and Stem, 2nd edition. New York: Oxford Science Publications.Google Scholar
Molina, J. & Struwe, L. (2009). Utility of secondary structure in phylogenetic reconstructions using nrDNA ITS sequences – an example from Potalieae (Gentianaceae: Asteridae). Syst. Bot. 34: 414428.CrossRefGoogle Scholar
Moon, H-K., Hong, S-P., Smets, E. & Huysmans, S. (2009). Phylogenetic significance of leaf micromorphology and anatomy in the tribe Mentheae (Nepetoideae: Lamiaceae). Bot. J. Linn. Soc. 160: 211231.CrossRefGoogle Scholar
Morais, H., Medri, M. E., Marur, C. J., Caramori, P. H., Ribeiro, A. M. A. & Gomes, J. C. (2004). Modifications on leaf anatomy of Coffea arabica caused by shade of pigeonpea (Cajanus cajan). Braz. Arch. Biol. Technol. 47: 863871.CrossRefGoogle Scholar
O'Brien, T. P. & McCully, M. E. (1981). The Study of Plant Structure: Principles and Selected Methods. Melbourne: Termarcarphi Pty. Ltd.Google Scholar
Pascal, L. M., Motte-Flora, C. E. F. & McKey, D. B. (2000). Secretory structures on the leaf rachis of Caesalpinieae and Mimosoideae (Leguminosae): implications for the evolution of nectary glands. Amer. J. Bot. 87: 327338.CrossRefGoogle ScholarPubMed
Peterson, R. L., Massicotte, H. B. & Melville, L. H. (2004). Mycorrhizas: Anatomy and Cell Biology. Ottawa: NRC Research Press.Google Scholar
Oliveira, A. F. M., Meirelles, S. T. & Salatino, A. (2003). Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss. Anais Acad. Brasil. Ciênc. 75: 431439.CrossRefGoogle ScholarPubMed
Sarmiento, G., Goldstein, G. & Meinzer, F. (1985). Adaptive strategies of woody species in neotropical savannas. Biol. Rev. 60: 315355.CrossRefGoogle Scholar
Scarano, F. R., Duarte, H. M., Ribeiro, K. T., Rodrigues, P. J. F. P., Barcellos, E. M. B., Franco, A. C. et al. (2001). Four sites with contrasting environmental stress in southeastern Brazil: relations of species, life form diversity, and geographical distribution to ecophysiological parameters. Bot. J. Linn. Soc. 136: 345364.CrossRefGoogle Scholar
Siqueira, J. O., Lambais, M. R. & Stumer, S. L. (2002). Fungos micorrízicos arbusculares. Biologia, Ciência e Desenvolvimento 25: 1221.Google Scholar
Solereder, H. (1908). Systematic Anatomy of the Dicotyledons, Vol. 1. Oxford: Clarendon Press.Google Scholar
Souza, P. B., Alves, J. A., Silva, A. F. & Souza, A. L. (2008). Composição florística da vegetação arbórea de um remanescente de cerração, Paraopeba, MG. Rev. Árvore 32(4): 781790.CrossRefGoogle Scholar
Stace, C. A. (1965). Cuticular studies as an aid to plant taxonomy. Bull. Brit. Mus. (Nat. Hist.), Bot. 4: 178.Google Scholar
Struwe, L. & Albert, V. A. (2002). Gentianaceae: Systematics and Natural History. Cambridge, UK: Cambridge University Press.Google Scholar
Struwe, L., Kadereit, J. W., Klackenberg, J., Nilsson, S., Thiv, M., Von-Hagen, K. B. & Albert, V. A. (2002). Systematics, character evolution, and biogeography of Gentianaceae, including a new tribal and subtribal classification. In: Struwe, L. & Albert, V. A. (eds) Gentianaceae: Systematics and Natural History. Cambridge, UK: Cambridge University Press.Google Scholar
Struwe, L., Albert, V. A., CaliÓ, M. F., Frasier, C., Lepis, K. B., Mathews, K. G. & Grant, J. R. (2009). Evolutionary patterns in neotropical Helieae (Gentianaceae): evidence from morphology, chloroplast and nuclear DNA sequences. Taxon 58: 479499.CrossRefGoogle Scholar
Vogel, S. (1998). Remarkable nectaries: structure, ecology, organophyletic perspectives. II. Nectarioles. Flora 193: 129.CrossRefGoogle Scholar