Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T05:29:14.499Z Has data issue: false hasContentIssue false

A Derivation of the Limited Information Maximum Likelihood Estimator

Published online by Cambridge University Press:  18 October 2010

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Problems
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. , Amemiya, , Takeshi. Advanced Econometrics. Cambridge: Harvard University Press, 1985.Google Scholar
2. Anderson, T.W. & Rubin, H.. Estimation of the parameters of a single equation in a complete system of stochastic equations. Annals of Mathematical Statistics 20 (1949): 4663.CrossRefGoogle Scholar
3. Chow, G.C. Econometrics. New York: McGraw-Hill, 1982.Google Scholar
4. Durbin, J. Maximum likelihood estimation of the parameters of a system of simultaneous regression equations. Econometric Theory 4 (1988): 159170.CrossRefGoogle Scholar
5. Godfrey, L.G. & Wickens, M.R.. A simple derivation of the limited information maximum likelihood estimator. Economic Letters 10 (1982): 277283.CrossRefGoogle Scholar
6. Hausman, J.A. An instrumental-variable approach to full-information estimators for linear and certain nonlinear econometric models. Econometrica 43 (1975): 727738.CrossRefGoogle Scholar
7. Hendry, D. The structure of simultaneous equations estimators. Journal of Econometrics 4 (1976): 5188.CrossRefGoogle Scholar
8. , Holly, , Alberto. Solution to limited information estimation. Econometric Theory 2 (1986): 299301.Google Scholar
9. Wickens, M.R. & Phillips, P.C.B.. Excercises in Econometrics, Vol. II. Cambridge: Phillip Allen, Oxford, and Ballinger, 1978.Google Scholar