Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T19:05:57.378Z Has data issue: false hasContentIssue false

SEMIPARAMETRIC EFFICIENCY BOUND IN TIME-SERIES MODELS FOR CONDITIONAL QUANTILES

Published online by Cambridge University Press:  18 August 2009

Abstract

We derive the semiparametric efficiency bound in dynamic models of conditional quantiles under a sole strong mixing assumption. We also provide an expression of Stein’s (1956) least favorable parametric submodel. Our approach is as follows: First, we construct a fully parametric submodel of the semiparametric model defined by the conditional quantile restriction that contains the data generating process. We then compare the asymptotic covariance matrix of the MLE obtained in this submodel with those of the M-estimators for the conditional quantile parameter that are consistent and asymptotically normal. Finally, we show that the minimum asymptotic covariance matrix of this class of M-estimators equals the asymptotic covariance matrix of the parametric submodel MLE. Thus, (i) this parametric submodel is a least favorable one, and (ii) the expression of the semiparametric efficiency bound for the conditional quantile parameter follows.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Begun, J., Hall, W., Huang, W., & Wellner, J. (1983) Information and asymptotic efficiency in parametric- nonparametric models. Annals of Statistics 11, 432452.CrossRefGoogle Scholar
Bickel, P.J. (1982) On adaptive estimation. Annals of Statistics 10, 647671.CrossRefGoogle Scholar
Bickel, P.J., Klaassen, C.A.J., Ritov, Y., & Wellner, J.A. (1993) Efficient and Adaptive Inference in Semiparametric Models. Johns Hopkins University Press.Google Scholar
Bickel, P.J., Klaassen, C.A.J., Ritov, Y., & Wellner, J.A. (2005) Semiparametric Inference and Models. Mimeo, University of California, Berkeley.Google Scholar
Bickel, P.J. & Kwon, J. (2001) Inference for semiparametric models: Some questions and an answer. Statistica Sinica 11, 863960.Google Scholar
Carrasco, M., Chernov, M., Florens, J.-P., & Ghysels, E. (2007) Efficient estimation of general dynamic models with a continuum of moment conditions. Journal of Econometrics 140, 529573.CrossRefGoogle Scholar
Carrasco, M. & Florens, J.-P. (2004) On the Asymptotic Efficiency of GMM. Mimeo, University of Montreal and University of Toulouse I.Google Scholar
Drost, F.C., Klaassen, C., & Werker, B.J. (1997) Adaptive estimation in time-series models. Annals of Statistics 25, 786818.CrossRefGoogle Scholar
Engle, R.F., Hendry, D.F., & Richard, J.-F. (1983) Exogeneity. Econometrica 51, 277304.CrossRefGoogle Scholar
Fabian, V. & Hannan, J. (1982) On estimation and adaptive estimation for locally asymptotically normal families. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 59, 459478.CrossRefGoogle Scholar
Gourieroux, C., Monfort, A., & Trognon, A. (1984) Pseudo maximum likelihood methods: Theory. Econometrica 52, 681700.CrossRefGoogle Scholar
Greenwood, P.E., Müller, U.U., & Wefelmeyer, W. (2004) An introduction to effcient estimation for semiparametric time series. In Mikulin, M.S., Balakrishnan, N., Mesbah, M., & Limnios, N. (eds.), Parametric and Semiparametric Models with Applications to Reliablilty, Survival Analysis, and Quality of Life, pp. 253272. Birkhäuser.Google Scholar
Hallin, M. & Mizera, I. (2001) Sample heterogeneity and the asymptotics of M-estimators. Journal of Statistical Planning and Inference 93, 139160.CrossRefGoogle Scholar
Hallin, M., Vermandeley, C., & Werker, B.J. (2004) Semiparametrically Efficient Inference Based on Signs and Ranks for Median Restricted Models. Mimeo, Université Libre de Bruxelles and Tilburg University.CrossRefGoogle Scholar
Hansen, L.P., Heaton, J., & Ogaki, M. (1988) Efficiency bounds implied by multiperiod conditional moment restrictions. Journal of the American Statistical Association 83, 863871.CrossRefGoogle Scholar
Huber, P.J. (1967) The behavior of maximum likelihood estimates under nonstandard conditions. In Proceedings of the Fifth Berkeley Symposium in Mathematical Statistics and Probability. University of California Press.Google Scholar
Kitamura, Y. (2006) Empirical Likelihood Methods in Econometrics: Theory and Practice. Cowles Foundation discussion paper No. 1569.Google Scholar
Klaassen, C.A.J. & Wellner, J.A. (1997) Efficient estimation in the bivariate normal copula model: Normal margins are least favourable. Bernoulli 3, 5577.CrossRefGoogle Scholar
Koenker, R. & Zhao, Q. (1996) Conditional quantile estimation and inference for ARCH models. Econometric Theory 12, 793813.CrossRefGoogle Scholar
Komunjer, I. (2005) Quasi-maximum likelihood estimation for conditional quantiles. Journal of Econometrics 128, 137164.CrossRefGoogle Scholar
Komunjer, I. & Ragusa, G. (2009) Existence and Uniqueness of Semiparametric Projections. Mimeo, University of California San Diego and University of California Irvine.Google Scholar
Komunjer, I. & Vuong, Q. (2007) Efficient Estimation in Dynamic Conditional Quantile Models. Mimeo, University of California and Penn State University.Google Scholar
Kreiss, J.P. (1987) On adaptive estimation in stationary ARMA processes. Annals of Statistics 15, 112133.CrossRefGoogle Scholar
Murphy, S.A. & van der Vaart, A.W. (2000) On profile likelihood. Journal of the American Statistical Association 95, 449465.10.1080/01621459.2000.10474219CrossRefGoogle Scholar
Newey, W.K. & McFadden, D.L. (1994) Large sample estimation and hypothesis testing. In Engle, R.F., & McFadden, D.L. (eds.), Handbook of Econometrics, pp. 21132247. Elsevier Science.Google Scholar
Newey, W.K. & Powell, J.L. (1990) Efficient estimation of linear and type I censored regression models under conditional quantile restrictions. Econometric Theory 6, 295317.CrossRefGoogle Scholar
Pfanzagl, J. (1976) Investigating the quantile of an unknown distribution. In Zeigler, J.W. (ed.), Contributions to Applied Statistics. Birkhäuser.Google Scholar
Pollard, D. (1991) Asymptotics for least absolute deviation regression estimators. Econometric Theory 7, 186199.CrossRefGoogle Scholar
Severini, T.A. & Wong, W.H. (1992) Profile likelihood and conditionally parametric models. Annals of Statistics 20, 17681802.CrossRefGoogle Scholar
Stein, C. (1956) Efficient nonparametric testing and estimation. In Proceedings of the Third Berkeley Symposium in Mathematical Statistics and Probability, vol. 1, pp. 187196. University of California Press.Google Scholar
Wellner, J.A., Klaassen, C.A.J., & Ritov, Y. (2006) Semiparametric models: A review of progress since BKRW (1993). In Fan, J. & Koul, H. (eds.), Frontiers in Statistics: In Honor of Peter J. Bickel’s 65th Birthday, pp. 2535. Imperial College Press.CrossRefGoogle Scholar
White, H. (2001) Asymptotic Theory for Econometricians. Academic Press.Google Scholar