We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A high-order finite difference scheme for the fractional Cattaneo equation is investigated. The L1 approximation is invoked for the time fractional part, and a compact difference scheme is applied to approximate the second-order space derivative. The stability and convergence rate are discussed in the maximum norm by the energy method. Numerical examples are provided to verify the effectiveness and accuracy of the proposed difference scheme.
To understand a genetic regulatory network, two popular mathematical models, Boolean Networks (BNs) and its extension Probabilistic Boolean Networks (PBNs) have been proposed. Here we address the problem of constructing a sparse Probabilistic Boolean Network (PBN) from a prescribed positive stationary distribution. A sparse matrix is more preferable, as it is easier to study and identify the major components and extract the crucial information hidden in a biological network. The captured network construction problem is both ill-posed and computationally challenging. We present a novel method to construct a sparse transition probability matrix from a given stationary distribution. A series of sparse transition probability matrices can be determined once the stationary distribution is given. By controlling the number of nonzero entries in each column of the transition probability matrix, a desirable sparse transition probability matrix in the sense of maximum entropy can be uniquely constructed as a linear combination of the selected sparse transition probability matrices (a set of sparse irreducible matrices). Numerical examples are given to demonstrate both the efficiency and effectiveness of the proposed method.