Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T06:54:49.088Z Has data issue: false hasContentIssue false

The Strud crustacean fauna (Late Devonian, Belgium): updated review and palaeoecology of an early continental ecosystem

Published online by Cambridge University Press:  09 January 2018

Pierre Gueriau*
Affiliation:
Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207), Sorbonne Universités, MNHN, CNRS, UPMC-Paris 6, Muséum national d'Histoire naturelle, 57 rue Cuvier, CP 38, F-75005, Paris, France. Email: [email protected] IPANEMA, CNRS, ministère de la Culture, UVSQ, USR3461, Université Paris–Saclay, F-91192 Gif-sur-Yvette, France. Synchrotron SOLEIL, BP 48 Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France.
Nicolas Rabet
Affiliation:
Unité Biologie des Organismes et Écosystèmes Aquatiques (BOREA, UMR 7208), Sorbonne Universités, MNHN, UPMC-Paris 6, UCBN, CNRS, IRD, Muséum national d'Histoire naturelle, 57 rue Cuvier, CP 26, 75005 Paris, France.
Eva Du Tien Hat
Affiliation:
Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207), Sorbonne Universités, MNHN, CNRS, UPMC-Paris 6, Muséum national d'Histoire naturelle, 57 rue Cuvier, CP 38, F-75005, Paris, France. Email: [email protected]
*
*Corresponding author.

Abstract

Arthropods were the first known animals to colonise land habitats, with myriapods and arachnids having done so at least by the Silurian. Much later, several lineages of Pancrustacea (hexapods and the paraphyletic crustaceans) also ventured onto land; the hexapods by the Early Devonian, and later at least four other groups of crustaceans, namely isopods, amphipods, ostracods and decapods, most of which generally colonised the continental water bodies. All faced a series of challenges (in particular: gas exchange; desiccation; reproduction; osmoregulation; and exposure to ultraviolet radiation), resulting in many morphological, physiological and ecological adaptations. Nonetheless, whether they reached land via saltwater or freshwater remains poorly documented, mainly because relevant localities are few. The Famennian (Late Devonian) Strud locality in Belgium provided an exceptional source of information on early aquatic continental ecosystems and their plant, vertebrate and arthropod colonisers at a crucial step in the terrestrialisation process. Here, we review and update its crustacean fauna, which inhabited floodplain and temporary pool waters. New anatomical details of the notostracan Strudops goldenbergi Lagebro et al., 2015, as well as a new genus and species of spinicaudatan, are described. We also discuss the ecology of this unique, early continental ecosystem and the insights it gives into the terrestrialisation process.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Algeo, T. J. & Scheckler, S. E. 1998. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society, London B: Biological Sciences 353, 113–30.Google Scholar
Anderson, L. I. & Trewin, N. H. 2003. An Early Devonian arthropod fauna from the Windyfield chert, Aberdeenshire, Scotland. Palaeontology 46, 467509.Google Scholar
Astrop, T. I. & Hegna, T. A. 2015. Phylogenetic relationships between living and fossil spinicaudatan taxa (Branchiopoda Spinicaudata): reconsidering the evidence. Journal of Crustacean Biology 35, 339–54.Google Scholar
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences 34, 127–55.Google Scholar
Bellec, L. & Rabet, N. 2016. Dating of the Limnadiidae family suggests an American origin of Eulimnadia. Hydrobiologia 773, 149–61.Google Scholar
Blieck, A., Clément, G., Blom, H., Lelièvre, H., Luksevics, E., Streel, M., Thorez, J. & Young, G. C. 2007. The biostratigraphical and palaeogeographical framework of the earliest diversification of tetrapods (Late Devonian). In Becker, R. T. & Kirchgasser, W. T. (eds) Devonian events and correlations – SDS volume in honour of M. House. Geological Society, London, Special Publications 278, 219–35. London & Bath: The Geological Society. 280 pp.Google Scholar
Blieck, A., Clément, G. & Streel, M. 2010. The biostratigraphical distribution of earliest tetrapods (Late Devonian): a revised version with comments on biodiversification. In Vecoli, M., Clément, G. & Meyer-Berthaud, B. (eds) The terrestrialization process: modelling complex interactions at the biosphere–geosphere interface. Geological Society, London, Special Publications 339, 129–38. London & Bath: The Geological Society. 187 pp.Google Scholar
Braddy, S. J. 2004. Ichnological evidence for the arthropod invasion of land. Fossils and Strata 51, 136–40.Google Scholar
Brooks, H. K. 1962. The Palaeozoic Eumalacostraca of North America. Bulletins of American Paleontology 44, 163338.Google Scholar
Butler, A. D., Cunningham, J. A., Budd, G. E. & Donoghue, P. C. J. 2015. Experimental taphonomy of Artemia reveals the role of endogenous microbes in mediating decay and fossilization. Proceedings of the Royal Society, London B: Biological Sciences 282, 20150476.Google Scholar
Calman, W. T. 1904. On the classification of the Crustacea Malacostraca. Annals and Magazine of Natural History, including Zoology, Botany, and Geology 7, 144–58.Google Scholar
Caplan, M. L. & Bustin, R. M. 1999. Devonian–Carboniferous mass extinction event, widespread organic-rich mudrock and anoxia: causes and consequences. Palaeogeography, Palaeoclimatology, Palaeoecology 148, 187207.Google Scholar
Clack, J. A. 2012. Gaining ground: the origin and evolution of tetrapods. Bloomington: Indiana University Press. 532 pp.Google Scholar
Clark, N. D. L. 2013. Tealliocaris: a decapod crustacean from the Carboniferous of Scotland. Palaeodiversity 6, 107–33.Google Scholar
Clément, G., Ahlberg, P. E., Blieck, A., Blom, H., Clack, J. A., Poty, E., Thorez, J. & Janvier, P. 2004. Devonian tetrapod from Western Europe. Nature 427, 412–13.Google Scholar
Clément, G. & Boisvert, C. A. 2006. Lohest's true and false ‘Devonian amphibians': evidence for the rhynchodipterid lungfish Soederberghia in the Famennian of Belgium. Journal of Vertebrate Paleontology 26, 276–83.Google Scholar
Collette, J. H. & Hagadorn, J. W. 2010. Three-dimensionally preserved arthropods from Cambrian Lagerstätten of Quebec and Wisconsin. Journal of Paleontology 84, 646–67.Google Scholar
Collette, J. H., Gass, K. C. & Hagadorn, J. W. 2012. Protichnites eremita unshelled? Experimental model-based neoichnology and new evidence for a euthycarcinoid affinity for this ichnospecies. Journal of Paleontology 86, 442–54.Google Scholar
Cooper, C. L. 1936. Actinopterygian jaws from the Mississippian Black Shales of the Mississippi Valley. Journal of Paleontology 10, 9294.Google Scholar
Crépin, F. 1875. Description de quelques plantes fossiles de l'étage des Psammites du Condroz (Dévonien supérieur). Bulletin de l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique 38, 356–66.Google Scholar
Cressler, W. L., Daeschler, E. B., Slingerland, R. & Peterson, D. A. 2010. Terrestrialization in the Late Devonian: a palaeoecological overview of the Red Hill site, Pennsylvania, USA. In Vecoli, M., Clément, G. & Meyer-Berthaud, B. (eds) The terrestrialization process: modelling complex interactions at the biosphere–geosphere interface. Geological Society, London, Special Publications 339, 111–28. London & Bath: The Geological Society. 187 pp.Google Scholar
Dahl, T. W., Hammarlund, E. U., Anbar, A. D., Bond, D. P. G., Gill, B. C., Gordon, G. W., Knoll, A. H., Nielsen, A. T., Schovsbo, N. H. & Canfield, D. E. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences USA 107, 17911–15.Google Scholar
Delgehier, M. 2014. Fish/tetrapod Communities in the Upper Devonian. Master's Thesis, Uppsala Universitet. 75 pp.Google Scholar
Denayer, J., Prestianni, C., Gueriau, P., Olive, S. & Clément, G. 2016. Stratigraphy and depositional environments of the Late Famennian (Late Devonian) of Southern Belgium and characterization of the Strud locality. Geological Magazine 153, 112–27.Google Scholar
DiMichele, W. A., Hook, R. W., Beerbower, R., Boy, J. A., Gastaldo, R. A., Hotton, N. III, Phillips, T. L., Scheckler, S. E., Shear, W. A. & Sues, H.-D. 1992. Paleozoic terrestrial ecosystems. In Behrensmeyer, A. K. Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D. & Wing, S. L. (eds) Terrestrial Ecosystems through Time, 205325. Chicago: University of Chicago Press. 588 pp.Google Scholar
Dunlop, J. A., Scholtz, G. & Selden, P. A. 2013. Water-to-land transitions. In Minelli, A., Boxshall, G. & Fusco, G. (eds) Arthropod biology and evolution: molecules, development, morphology, 417–39. Heidelberg: Springer. ix+532 pp.Google Scholar
Edgecombe, G. D. & Legg, D. A. 2014. Origins and early evolution of arthropods. Palaeontology 57, 457–68.Google Scholar
Engel, M. S. & Grimaldi, D. 2004. New light shed on the oldest insect. Nature 427, 627–30.Google Scholar
Fayers, S. R. & Trewin, N. H. 2005. A hexapod from the Early Devonian Windyfield Chert, Rhynie, Scotland. Palaeontology 48, 1117–30.Google Scholar
Feldmann, R. M. & Schweitzer, C. E. 2010. The oldest shrimp (Devonian: Famennian) and remarkable preservation of soft tissue. Journal of Crustacean Biology 30, 629–35.Google Scholar
Fryer, G. & Boxshall, G. 2009. The feeding mechanisms of Lynceus (Crustacea: Branchiopoda: Laevicaudata), with special reference to L. simiaefacies Harding. Zoological Journal of the Linnean Society 155, 513–41.Google Scholar
Garrouste, R., Clément, G., Nel, P., Engel, M. S., Grandcolas, P., D'Haese, C., Lagebro, L., Denayer, J., Gueriau, P., Lafaite, P., Olive, S., Prestianni, C. & Nel, A. 2012. A complete insect from the Late Devonian. Nature 488, 8285.Google Scholar
Garrouste, R., Clément, G., Nel, P., Engel, M. S., Grandcolas, P., D'Haese, C., Lagebro, L., Denayer, J., Gueriau, P., Lafaite, P., Olive, S., Prestianni, C. & Nel, A. 2013. Garrouste et al. reply. Nature 494, E4E5.Google Scholar
Giribet, G. & Edgecombe, G. D. 2013. The Arthropoda: a phylogenetic framework. In Minelli, A., Boxshall, G. & Fusco, G. (eds) Arthropod biology and evolution: molecules, development, morphology, 1740. Heidelberg: Springer. ix+532 pp.Google Scholar
Godderis, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V. & Nardin, E. 2014. The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth-Science Reviews 128, 122–38.Google Scholar
Golonka, J. 2000. Cambrian–Neogene plate tectonic maps. Krakow: Wydavnictwa Universytetu Jagiellonskiego. 125 pp.Google Scholar
Grobben, K. 1892. Zur Kenntnis des Stammbaumes und des Systems der Crustaceen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften 101, 237–94.Google Scholar
Gueriau, P., Charbonnier, S. & Clément, G. 2014a. First decapod crustaceans in a Late Devonian continental ecosystem. Palaeontology 57, 1203–13.Google Scholar
Gueriau, P., Charbonnier, S. & Clément, G. 2014b. Angustidontid crustaceans from the Late Devonian of Strud (Namur Province, Belgium): insights into the origin of Decapoda. Neues Jahrbuch für Geologie und Paläontologie 273, 327–37.Google Scholar
Gueriau, P., Rabet, N., Clément, G., Lagebro, L., Vannier, J., Briggs, D. E. G., Charbonnier, S., Olive, S. & Béthoux, O. 2016. A 365-million-year-old freshwater community reveals morphological and ecological stasis in branchiopod crustaceans. Current Biology 26, 383–90.Google Scholar
Hagadorn, J. W., Collette, J. H. & Belt, E. S. 2011. Eolian-aquatic deposits and faunas of the middle Cambrian Potsdam Group. Palaios 26, 314–34.Google Scholar
Harding, J. P. 1941. Crustacea. Anostraca and Conchostraca. British Museum (Natural History) Expedition to South-West Arabia 1, 5356.Google Scholar
Harvey, T. H. & Butterfield, N. J. 2008. Sophisticated particle-feeding in a large Early Cambrian crustacean. Nature 452, 868–71.Google Scholar
Hegna, T. A. 2011. New insights on notostracan limb differentiation and evolution and its implications for calmanostracan phylogeny. 2nd International Congress on Invertebrate Morphology, Harvard University, Cambridge, MA. (Unpublished Abstract.)Google Scholar
Hirst, S. & Maulik, S. 1926. On some arthropod remains from the Rhynie Chert (Old Red Sandstone). Geological Magazine 63, 6971.Google Scholar
Hock, M. G. 1879. Communication du 16 septembre 1879. Annales de la société géologique de Belgique 6, 9899.Google Scholar
Hörnschemeyer, T., Haug, J., Béthoux, O., Beutel, R. G., Charbonnier, S., Hegna, T. A., Koch, M., Rust, J., Wedmann, S., Bradler, S. & Willmann, R. 2013. Is Strudiella a Devonian insect? Nature 494, E3E4.Google Scholar
Jones, W. T., Feldmann, R. M., Schram, F. R., Schweitzer, C. E. & Maguire, E. 2016. The proof is in the pouch: Tealliocaris is a peracarid. Palaeodiversity 9, 7588.Google Scholar
Kobayashi, T. 1954. Fossil estherians and allied fossils. Journal of the Faculty of Science, University of Tokyo, Section 2, Geology, Mineralogy, Geography, Geophysics 9, 1192.Google Scholar
Lagebro, L., Gueriau, P., Hegna, T. A., Rabet, N., Butler, A. D. & Budd, G.E. 2015. The oldest notostracan (Upper Devonian Strud locality, Belgium). Palaeontology 58, 497509.Google Scholar
Latreille, P. A. 1802. Histoire naturelle, générale et particulière, des crustacés et des insectes. Vol. 3. Paris: F. Dufart. 468 pp.Google Scholar
Latreille, P. A. 1817. Les Crustacés, les Arachnides, les Insectes. In Cuvier, G. (ed) Le règne animal distribué d'après son organisation, pour servir de base à l'histoire naturelle des animaux et d'introduction à l'anatomie comparée, Vol. 3. Paris: Déterville. 688 pp.Google Scholar
Lee, M. S. Y., Soubrier, J. & Edgecombe, G. D. 2013. Rates of phenotypic and genomic evolution during the Cambrian explosion. Current Biology 23, 1889–95.Google Scholar
Lehman, J.-P. 1959. Les Dipneustes du Dévonien supérieur du Groenland. Meddelelser om Grønland 160, 158.Google Scholar
Leriche, M. 1931. Les Poissons Famenniens de la Belgique. Mémoire de la Classe des Sciences de l'Académie Royale de Belgique 10, 172.Google Scholar
Linder, F. 1945. Affinities within the Branchiopoda with notes on some dubious fossils. Arkiv för Zoologi 37, 128.Google Scholar
Little, C. 1990. The Terrestrial Invasion – an Ecophysiological Approach to the Origins of Land Animals. Cambridge, UK: Cambridge University Press. 316 pp.Google Scholar
Lohest, M. 1888. Recherches sur les poissons des terrains paléozoïques de Belgique. Poissons des Psammites du Condroz, Famennien supérieur. Annales de la Société Géologique de Belgique, Mémoires 15, 112203.Google Scholar
Longhurst, A. R. 1955. A review of the Notostraca. Bulletin of the British Museum (Natural History) Zoology 3, 157.Google Scholar
MacNaughton, R. B., Cole, J. M., Dalrymple, R. W., Braddy, S. J., Briggs, D. E. G. & Lukie, T. D. 2002. First steps on land: Arthropod trackways in Cambrian–Ordovician eolian sandstone, southeastern Ontario, Canada. Geology 30, 391–94.Google Scholar
McGhee, G. R. 1996. The Late Devonian mass extinction: the Frasnian/Famennian crisis. New York: Columbia Univ. Press. 303 pp.Google Scholar
McNamara, K. & Selden, P. 1993. Strangers on the shore. New Scientist 139, 2327.Google Scholar
Moussian, B. 2013. The arthropod cuticle. In Minelli, A., Boxshall, G. & Fusco, G. (eds) Arthropod biology and evolution: molecules, development, morphology, 171–96. Heidelberg: Springer. ix+532 pp.Google Scholar
Olive, S. 2015. Devonian antiarch placoderms from Belgium revisited. Acta Palaeontologica Polonica 60, 711–31.Google Scholar
Olive, S., Clément, G., Daeschler, E. B. & Dupret, V. 2015a. Characterization of the placoderm (Gnathostomata) assemblage from the tetrapod-bearing locality of Strud (Belgium, upper Famennian). Palaeontology 58, 9811002.Google Scholar
Olive, S., Clément, G., Denayer, J., Derycke, C., Dupret, V., Gerienne, P., Gueriau, P., Marion, J.-M., Mottequin, B. & Prestianni, C. 2015b. Flora and fauna from a new Famennian (Upper Devonian) locality at Becco, eastern Belgium. Geologica Belgica 18, 92101.Google Scholar
Olive, S., Ahlberg, P. E., Pernègre, V. N., Poty, É., Steurbaut, É. & Clément, G. 2016. New discoveries of tetrapods (ichthyostegid-like and whatcheeriid-like) in the Famennian (Late Devonian) localities of Strud and Becco (Belgium). Palaeontology 59(6), 827–40.Google Scholar
Packard, A. S. 1871. Preliminary notice of North American Phyllopoda. The American Journal of Science and Arts, Series 3 2, 108–13.Google Scholar
Peach, B. N. 1908. Monograph on the higher Crustacea of the Carboniferous rocks of Scotland. Memoirs of the Geological Survey of Great Britain, Palaeontology 1908, 182.Google Scholar
Prestianni, C., Steel, M., Thorez, J. & Gerrienne, P., 2007. Strud: old quarry, new discoveries. Preliminary report. In Steemans, P. & Javaux, E. (eds) Recent Advances in Palynology, Carnet de Géologie, Memoir 2007/01, 4347.Google Scholar
R Development Core Team, 2011. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Raup, D. M. & Sepkoski, J. J. Jr 1982. Mass extinctions in the marine fossil record. Science 215, 1501–03.Google Scholar
Regier, J. C., Shultz, J. W., Zwick, A., Hussey, A., Ball, B., Wetzer, R., Martin, J. W. & Cunningham, C. W. 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463, 1079–83.Google Scholar
Roessler, E. W. 1995. Review of Colombian conchostraca (Crustacea) – morphotaxonomic aspects. Hydrobiologia 298, 253–62.Google Scholar
Rogers, D. C., Rabet, N. & Weeks, S. C. 2012. Revision of the extant genera of Limnadiidae (Branchiopoda: Spinicaudata). Journal of Crustacean Biology 32, 827–42.Google Scholar
Rolfe, W. D. I. & Dzik, J. 2006. Angustidontus, a Late Devonian pelagic predatory crustacean. Transactions of the Royal Society of Edinburgh: Earth Sciences 97, 7596.Google Scholar
Rota-Stabelli, O., Daley, A. C. & Pisani, D. 2013. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Current Biology 23, 392–98.Google Scholar
Rubinstein, C. V., Gerrienne, P., de la Puente, G., Astini, R. A. & Steemans, P. 2010. Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytologist 188, 365–69.Google Scholar
Sallan, L. C. & Coates, M. I. 2010. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. Proceedings of the National Academy of Sciences, USA 107, 10131–35.Google Scholar
Sars, G. O. 1867. Histoire naturelle des crustacés d'eau douce de Norvège. Les Malacostracés. Oslo: C. Johnsen. 188 pp.Google Scholar
Schram, F. R., Feldmann, R. M. & Copeland, M. J. 1978. The Late Devonian Palaeopalaemonidae and the earliest decapod crustaceans. Journal of Paleontology 52, 1375–87.Google Scholar
Scourfield, D. J. 1926. On a new type of crustacean from the Old Red Sandstone (Rhynie Chert Bed, Aberdeenshire) – Lepidocaris rhyniensis, gen. et sp. nov. Philosophical Transactions of the Royal Society,London. Series B 214, 153–87.Google Scholar
Scourfield, D. J. 1940. The oldest known fossil insect (Rhyniella praecursor Hirst and Maulik). Further details from additional specimens. Proceedings of the Linnean Society of London 152, 113–31.Google Scholar
Seilacher, A., Reif, W. E. & Westphal, F. 1985. Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philosophical Transactions of the Royal Society, London B: Biological Sciences 311, 523.Google Scholar
Sepkoski, J. J. Jr 2002. A compendium of fossil marine animal genera. Bulletin of American Paleontology 363, 1560.Google Scholar
Shear, W. A. 2000. Gigantocharinus szatmaryi, a new trigonotarbid arachnid from the Late Devonian of North America (Chelicerata, Arachnida, Trigonotarbida). Journal of Paleontology 74, 2531.Google Scholar
Shear, W. A. & Selden, P. A. 2001. Rustling in the undergrowth: animals in early terrestrial ecosystems. In Gensel, P. G. & Edwards, D. (eds) Plants invade the land. Evolutionary and environmental perspectives, 2951. New York: Columbia University Press. 512 pp.Google Scholar
Shpinev, E. S. 2010. Angustidontidae (Crustacea: Malacostraca) from the Upper Devonian of Ukraine and Belarus. Paleontological Journal 44, 409–17.Google Scholar
Smithson, T. R., Wood, S. P., Marshall, J. E. A. & Clack, J. A. 2012. Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer's gap. Proceedings of the National Academy of Sciences, USA 109, 4532–37.Google Scholar
Stein, W. E., Berry, C. M., Hernick, L. V. & Mannolini, F. 2012. Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. Nature 483, 7881.Google Scholar
Stockmans, F. 1948. Végétaux du Dévonien supérieur de la Belgique. Mémoires du Musée Royal d'Histoire Naturelle de Belgique 110. 84 pp.Google Scholar
Tetlie, O. E., Brandt, D. S. & Briggs, D. E. G. 2008. Ecdysis in sea scorpions (Chelicerata: Eurypterida). Palaeogeography, Palaeoclimatology, Palaeoecology 265, 182–94.Google Scholar
Tillyard, R. J. 1928. Some remarks on the Devonian fossil insects from the Rhynie chert beds, Old Red Sandstone. Transactions of the Royal Entomological Society of London 76, 6571.Google Scholar
Waddington, J., Rudkin, D. M. & Dunlop, J. A. 2015 A new mid-Silurian aquatic scorpion – one step closer to land? Biology Letters 11, 20140815.Google Scholar
Wahlenberg, G. 1821. Petrificata telluris Suecanæ. Acta Societatis Regiæ Scientiarum Uspalensis 8, 63.Google Scholar
Walmsley, V. G. 1962. The identity and a new description of Pteronitella retroflexa (Wahlenberg) from the Upper Silurian of Gotland and the Welsh Borders. Särtryck ur Geologiska Föreningens Förhandlingar 84, 351–62.Google Scholar
Ward, P., Labandeira, C., Laurin, M. & Berner, R. A. 2006. Confirmation of Romer's gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization. Proceedings of the National Academy of Sciences, USA 103, 16818–22.Google Scholar
Wellman, C. H. 2014. The nature and evolutionary relationships of the earliest land plants. New Phytologist 202, 13.Google Scholar
Whitfield, R. P. 1880. Notice of new forms of fossil crustaceans from the Upper Devonian rocks of Ohio, with descriptions of new genera and species. American Journal of Science 19, 3342.Google Scholar
Wilson, H. M., Daeschler, E. B. & Desbiens, S. 2005. New flat-backed archipolypodan millipedes from the Upper Devonian of North America. Journal of Paleontology 79, 738–44.Google Scholar
Zhang, W.-T., Chen, P.-J. & Shen, Y.-B., 1976. Fossil Conchostraca of China. Beijing: Science Press. 325 pp.Google Scholar
Zhang, Z.-Q. 2011. Phylum Arthropoda von Siebold, 1848. In Zhang, Z. Q. (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148, 99103. Auckland, New Zealand: Magnolia Press. 237 pp.Google Scholar