Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T21:44:51.054Z Has data issue: false hasContentIssue false

Kinematic and tectonic significance of microstructures and crystallographic fabrics within quartz mylonites from the Assynt and Eriboll regions of the Moine thrust zone, NW Scotland

Published online by Cambridge University Press:  03 November 2011

R. D. Law
Affiliation:
Department of Earth Sciences, The University, Leeds LS2 9JT, England.
M. Casey
Affiliation:
Geologisches Institut, ETH-Zentrum, Zurich CH 8092, Switzerland.
R. J. Knipe
Affiliation:
Department of Earth Sciences, The University, Leeds LS2 9JT, England.

Abstract

Using a combination of optical microscopy and X-ray texture goniometry, an integrated microstructural and crystallographic fabric study has been made of quartz mylonites from thrust sheets located beneath, but immediately adjacent to, the Moine thrust in the Assynt and Eriboll regions of NW Scotland. A correlation is established between shape fabric symmetry and pattern of crystallographic preferred orientation, a particularly clear relationship being observed between shape fabric variation and quartz a-axis fabrics.

Coaxial strain paths dominate the internal parts of the thrust sheets and are indicated by quartz c- and a-axis fabrics which are symmetrical with respect to foliation and lineation. Non-coaxial strain paths are indicated within the more intensely deformed quartzites located near the boundaries of the sheets by asymmetrical c- and a-axis fabrics. These kinematic interpretations are supported by microstructural studies. At the Stack of Glencoul in the northern part of the Assynt region, the transition zone between these kinematic (strain path) domains is located at approximately 20 cm beneath the Moine thrust and is marked by a progression from symmetrical cross-girdle c-axis fabrics (30cm beneath the thrust), through asymmetrical cross-girdle c-axis fabrics to asymmetrical single girdle c-axis fabrics (0·5 cm beneath the thrust).

Tectonic models (incorporating processes such as extensional flow, gravity spreading and tectonic loading) which may account for the presence of strain path domains within the thrust sheets are considered, and their compatibility with local thrust sheet geometries assessed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, D. W. & Riekels, L. M. 1977. Dauphine twinning in quartzite mylonites. J GEOL 85, 1526.CrossRefGoogle Scholar
Baker, D. W. & Wenk, H. R. 1972. Preferred orientation in a low symmetry mylonite. J GEOL 80, 81105.CrossRefGoogle Scholar
Behrmann, J. H. 1982. Structures and deformational processes in a zone of contact strain beneath a nappe, Sierra Alhamilla, Spain. Unpublished DPhil thesis, Oxford University.Google Scholar
Behrmann, J. H. & Platt, J. P. 1982. Sense of nappe emplacement from quartz c-axis fabrics: an example from the Betic Cordilleras (Spain). EARTH PLANET SCI LETT 59, 208–15.CrossRefGoogle Scholar
Bouchez, J.-L. 1978. Preferred orientations of quartz c-axes in some tectonites. TECTONOPHYSICS 49, T25–T30.CrossRefGoogle Scholar
Bouchez, J.-L., Dervin, P., Mardon, J. P. & Englander, M. 1979. La diffraction neutronique appliquée à l'étude de l'orientation préférentielle de réseau dans les quartzites. BULL MINERAL 102, 225–31.Google Scholar
Bouchez, J.-L. & Duval, P. 1982. The fabric of polycrystalline ice in simple shear: experiments in torsion, natural deformation and geometrical interpretation. TEXTURES MICROSTRUCT 5, 117.CrossRefGoogle Scholar
Bouchez, J.-L., Lister, G. S. & Nicolas, A. 1983. Fabric asymmetry and shear sense in movement zones. GEOL RDSCH 72, 401–19.CrossRefGoogle Scholar
Boullier, A.-M. & Quenardel, J.-M. 1981. The Caledonides of northern Norway: relation between preferred orientation of quartz lattice, strain and translation of the Nappes. In McClay, K. R. & Price, N. J. (eds) Thrust and nappe tectonics, 185–95. SPEC PUBL GEOL SOC LONDON 9.CrossRefGoogle Scholar
Butler, R. W. H. 1984a. Evolution of thrust belts in the Alps (Savoy) and Moine thrust zone (Northwest Scotland). Unpublished PhD thesis, University College, Swansea.Google Scholar
Butler, R. W. H. 1984b. Structural evolution of the Moine thrust belt between Loch More and Glen Dubh, Scotland. SCOTT J GEOL 20, 161–79.CrossRefGoogle Scholar
Butler, R. W. H. & Coward, M. P. 1984. Geological constraints, structural evolution and deep geology of the northwest Scottish Caledonides. TECTONICS 3, 347–65.CrossRefGoogle Scholar
Callaway, C. 1884. Notes on progressive metamorphism. GEOL MAG 1, 218–24.CrossRefGoogle Scholar
Christie, J. M. 1956. The post-Cambrian thrusts of the Assynt Region. Unpublished PhD thesis, Edinburgh University.Google Scholar
Christie, J. M. 1960. Mylonitic rocks of the Moine thrust zone in the Assynt region, northwest Scotland. TRANS EDINBURGH GEOL SOC 18, 7993.CrossRefGoogle Scholar
Christie, J. M. 1963. The Moine thrust zone in the Assynt region, northwest Scotland. UNIV CALIFORNIA PUBL GEOL SCI 40, 345440.Google Scholar
Christie, J. M. 1965. Moine thrust: a reply. J GEOL 73, 677–81.CrossRefGoogle Scholar
Coward, M. P. 1982. Surge zones in the Moine thrust zone of NW Scotland. J STRUCT GEOL 2, 247–56.CrossRefGoogle Scholar
Coward, M. P. 1983. The thrust and shear zones of the Moine thrust zone and NW Scottish Caledonides. J GEOL SOC LONDON 140, 795811.CrossRefGoogle Scholar
Coward, M. P. 1984. The strain and textural history of thin-skinned tectonic zones: examples from the Assynt region of the Moine thrust zone, NW Scotland. J STRUCT GEOL 6, 8999.CrossRefGoogle Scholar
Elliott, D. 1972. Deformation paths in structural geology. BULL GEOL SOC AM 83, 2621–38.CrossRefGoogle Scholar
Elliott, D. 1976. The motion of thrust sheets. J GEOPHYS RES 81, 949–63.CrossRefGoogle Scholar
Elliott, D. & Johnson, M. R. W. 1980. The structural evolution of the northern part of the Moine thrust zone. TRANS R SOC EDINBURGH EARTH SCI 71, 6996.CrossRefGoogle Scholar
Evans, D. J. & White, S. H. 1984. Microstructural and fabric studies from the rocks of the Moine Nappe, Eriboll, NW Scotland. J STRUCT GEOL 6, 369–90.CrossRefGoogle Scholar
Garcia-Celma, A. 1982. Domainal and fabric heterogeneities in the Cap de Creus quartz mylonites. J STRUCT GEOL 4, 443–55.CrossRefGoogle Scholar
Garcia-Celma, A. 1983. C axis and shape fabrics in quartz mylonites of Cap de Creus (Spain): their properties and development. Proefschrift, Rijksuniversiteit Utrecht.Google Scholar
Johnson, M. R. W. 1965. The Moine thrust: a discussion. J GEOL 73, 672–6.CrossRefGoogle Scholar
Johnson, M. R. W. 1967. Mylonite zones and mylonite banding. NATURE 213, 246–7.CrossRefGoogle Scholar
Johnson, M. R. W., Kelly, S. P., Oliver, G. J. H. & Winter, D. A. 1985. Thermal effects and timing of thrusting in the Moine thrust zone. J GEOL SOC LONDON 142, 863–74.CrossRefGoogle Scholar
Knipe, R. J. 1985. Footwall geometry and the rheology of thrust sheets. J STRUCT GEOL 7, 110.CrossRefGoogle Scholar
Law, R. D., Knipe, R. J. & Dayan, H. 1984. Strain path partitioning within thrust sheets: microstructural and petrofabric evidence from the Moine thrust zone at Loch Eriboll, northwest Scotland. J STRUCT GEOL 6, 477–97.CrossRefGoogle Scholar
Lister, G. S. 1977. Cross-girdle c-axis fabrics in quartzites plastically deformed by plane strain and progressive simple shear. TECTONOPHYSICS 39, 51–4.CrossRefGoogle Scholar
Lister, G. S. & Dornsiepen, U. F. 1982. Fabric transitions in the Saxony Granulite Terrain. J STRUCT GEOL 4, 8192.CrossRefGoogle Scholar
Lister, G. S. & Hobbs, B. E. 1980. The simulation of fabric development during plastic deformation: the effect of deformation history. J STRUCT GEOL 2, 355–70.CrossRefGoogle Scholar
Lister, G. S., Patterson, M. S. & Hobbs, B. E. 1978. The simulation of fabric development in plastic deformation and its application to quartzites: the model. TECTONOPHYSICS 45, 107–58.CrossRefGoogle Scholar
Lister, G. S. & Snoke, A. 1984. S-C Mylonites. J STRUCT GEOL 6, 617–38.CrossRefGoogle Scholar
Lister, G. S. & Williams, P. F. 1979. Fabric development in shear zones, theoretical controls and observed phenomena. J STRUCT GEOL 1, 283–97.CrossRefGoogle Scholar
Lister, G. S. & Williams, P. F. 1983. The partitioning of deformation in flowing rock masses. TECTONOPHYSICS 92, 133.CrossRefGoogle Scholar
Macgregor, M. & Phemister, J. 1972. Geological Excursion Guide to the Assynt District of Sutherland. Edinburgh: Edinburgh Geological Society.Google Scholar
McClay, K. R. & Coward, M. P. 1981. The Moine thrust zone: an overview. In McClay, K. R. & Price, N. J. (eds) Thrust and Nappe Tectonics, 241–60. SPEC PUBL GEOL SOC LONDON 9.CrossRefGoogle Scholar
McLeish, A. J. 1971. Strain analysis of deformed pipe rock in the Moine thrust zone, northwest Scotland. TECTONOPHYSICS 12, 469503.CrossRefGoogle Scholar
Means, W. D., Hobbs, B. E., Lister, G. S. & Williams, P. F. 1980. Vorticity and non-coaxiality in progressive deformations. J STRUCT GEOL 2, 371–8.CrossRefGoogle Scholar
Miller, E. L., Lee, J., Marks, A. B. M. & Sutter, J. F. 1985. Deep seated ductile strain and metamorphism in an extensional tectonic setting: a case study from the Snake range, Nevada, USA. Abstracts for special meeting of the Geological Society of London on Continental Extensional Tectonics: Durham, England. Abstract number 35.Google Scholar
Ord, A. & Christie, J. M. 1984. Flow stresses from microstructures in mylonitic quartzites of the Moine thrust zone, Assynt area, Scotland. J STRUCT GEOL 6, 639–54.CrossRefGoogle Scholar
Peach, B. N., Home, J., Gunn, W., Clough, C. T. & Hinxman, L. W. 1907. The geological structure of the north-west Highlands of Scotland. MEM GEOL SURV GB.Google Scholar
Pfiffner, A. & Ramsay, J. G. 1982. Constraints on geological strain rates, arguments from finite strain states of naturally deformed rocks. J GEOPHYS RES 87, 311–21.CrossRefGoogle Scholar
Platt, J. P. & Behrmann, J. H. 1986. Structures and fabrics in a crustal scale shear zone, Betic Cordilleras, S. E. Spain. J STRUCT GEOL 8, 1534.CrossRefGoogle Scholar
Platt, J. P.van, den Eeckhout B., Janzen, E., Konert, G., Simon, O. J. & Weijermars, R. 1983. The structure and tectonic evolution of the Aguilon fold-nappe, Sierra Alhamilla, Betic Cordilleras, SE Spain. J STRUCT GEOL 5, 519–38.CrossRefGoogle Scholar
Platt, J. P. & Vissers, R. C. 1980. Extensional structures in anisotropic rocks. J STRUCT GEOL 2, 397410.CrossRefGoogle Scholar
Ramsay, J. G. 1967. Folding and Fracturing of Rocks. New York: McGraw-Hill.Google Scholar
Ramsay, J. G. 1980. Shear zone geometry: a review. J STRUCT GEOL 2, 397410.CrossRefGoogle Scholar
Ramsay, J. G. & Graham, R. H. 1970. Strain variation in shear belts. CAN J EARTH SCI 7, 786813.CrossRefGoogle Scholar
Ramsay, J. G. & Huber, M. 1983. The techniques of Modern Structural Geology, Vol. 1, Strain Analysis. London: Academic Press.Google Scholar
Riekels, L. M. & Baker, D. W. 1977. The origin of the double maximum of optic axes in quartzite mylonites. J GEOL 85, 114.CrossRefGoogle Scholar
Sanderson, D. J. 1982. Models of strain variation in nappes and thrust sheets: a review. TECTONOPHYSICS 88, 201–33.CrossRefGoogle Scholar
Schmid, S. M. 1982. Microfabric studies as indicators of deformation mechanisms and flow laws operating in mountain building. In Hsu, K. J. (ed) Mountain Building Processes, 95110. London: Academic Press.Google Scholar
Schmid, S. M., Casey, M. & Starkey, J. 1981. An illustration of the advantages of a complete texture analysis described by the Orientation Distribution Function (ODF) using quartz pole figure data. TECTONOPHYSICS 78, 101–17.CrossRefGoogle Scholar
Schmid, S. M. & Casey, M. (in press). Complete fabric analysis of some commonly observed quartz c-axis patterns. In Heard, H. C. & Hobbs, B. E. (eds) Mineral and Rock Deformation: Laboratory Studies, the Paterson Volume. AM GEOPHYS UNION, GEOPHYS MONOGRAPH 36.Google Scholar
Sibson, R. H., White, S. H. & Atkinson, B. K. 1981. Structure and distribution of fault rocks in the Alpine Fault Zone, New Zealand. In McClay, K. R. & Price, N. J. (eds) Thrust and Nappe Tectonics, 197210. SPEC PUBL GEOL SOC LONDON 9.CrossRefGoogle Scholar
Siddans, A. W. B. 1976. Deformed rocks and their textures. PHILOS TRANS R SOC LONDON A283, 4354.Google Scholar
Simpson, C. & Schmid, S. M. 1983. An evaluation of criteria to deduce the sense of movement in sheared rocks. BULL GEOL SOC AM 94, 1281–8.2.0.CO;2>CrossRefGoogle Scholar
Soper, N. J. & Barber, A. J. 1982. A model for the deep structure of the Moine thrust zone. J GEOL SOC LONDON 139, 127–38.CrossRefGoogle Scholar
Starkey, J. 1970. A computer program to prepare orientation diagrams. In Paulitsch, P. (ed.) Experimental and Natural Rock Deformation, 5174. Berlin: Springer Verlag.Google Scholar
Weathers, M. S., Bird, J. M., Cooper, R. F. & Kohlstedt, D. C. 1979. Differential stress determined from deformation induced microstructures of the Moine thrust zone. J GEOPHYS RES 84, 7459–509.CrossRefGoogle Scholar
White, S. H., Burrows, S. E., Carreras, J., Shaw, N. D. & Humphreys, F. J. 1980. On mylonites in ductile shear zones. J STRUCT GEOL 2, 175–87.CrossRefGoogle Scholar
Wilkinson, P., Soper, N. J. & Bell, A. M. 1975. Skolithos pipes as strain markers in mylonites. TECTONOPHYSICS 28, 143–57.CrossRefGoogle Scholar