Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T14:58:57.810Z Has data issue: false hasContentIssue false

Geochemistry of a continental tholeiite suite: late Palaeozoic quartz dolerite dykes of Scotland

Published online by Cambridge University Press:  03 November 2011

R. Macdonald
Affiliation:
Department of Environmental Sciences, University of Lancaster, Bailrigg, Lancaster LAI 4YQ, England
D. Gottfried
Affiliation:
U.S. Geological Survey, National Center, Reston, Va 22092, U.S.A.
M. J. Farrington
Affiliation:
Department of Environmental Sciences, University of Lancaster, Bailrigg, Lancaster LAI 4YQ, England
F. W. Brown
Affiliation:
U.S. Geological Survey, National Center, Reston, Va 22092, U.S.A.
N. G. Skinner
Affiliation:
U.S. Geological Survey, National Center, Reston, Va 22092, U.S.A.

Abstract

The late Carboniferous quartz dolerite suite of Scotland consists mainly of quartz tholeiites, with subordinate olivine tholeiites and tholeiitic andesites. The low pressure evolution of the magmas was controlled by fractionation of olivine–plagioclase–pyroxene–oxides assemblages from more magnesian compositions and plagioclase–pyroxene–oxides–apatite removal from intermediate compositions. A higher pressure stage dominated by olivine fractionation is suggested by the presence of olivine nodules in a magnesian basalt dyke from Fife.

The suite is of high-Fe-Ti type, closely comparable to certain basalts erupted in areas of active lithospheric spreading or “hot spots”, such as Iceland and Hawaii. The ppO2 can be inferred to have been rather higher in the Scottish rocks than in comparative suites, promoting earlier separation of Fe-Ti oxides, with the consequent effects on trace element distribution.

Apart from varying degrees of fractionation, chemical variations in the dykes are of three types: rather minor variations along individual dykes, variations across certain thicker dykes, and minor and trace element variations reflecting chemical heterogeneities in the mantle sources. The dykes and sills are inferred to have been fed from a plexus of small, partly independent, magma reservoirs.

New trace element data on tholeiitic lavas from the Oslo Rift confirm recently revived suggestions that the Scottish and northern English quartz dolerites are part of a larger province extending into Scandinavia.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arth, J. G. 1976. Behavior of trace elements during magmatic processes–a summary of theoretical models and their applications. J RES U S GEOL SURV 4, 41–7.Google Scholar
Banks, R. J. 1979. The use of linear programming in the analysis of petrological mixing problems. CONTRIB MINERAL PETROL 70, 237–44.CrossRefGoogle Scholar
Brooks, C. K. & Jakobsson, S. P. 1974. Petrochemistry of the volcanic rocks of the North Atlantic ridge system. In Kristjansson, L. (ed) Geodynamics of Iceland and the North Atlantic Area, 139154. Dordrecht: Reidel.CrossRefGoogle Scholar
Brooks, C. K. & Neilsen, T. F. D. 1978. Early stages in the differentiation of the Skaergaard magma as revealed by a closely related suite of dyke rocks. LITHOS 11, 114.CrossRefGoogle Scholar
Carmichael, I. S. E., Turner, F. J. & Verhoogen, J. 1974. Igneous Petrology. New York: McGraw-Hill.Google Scholar
Compston, W., McDougall, I. & Heier, K. S. 1968. Geochemical comparison of the Mesozoic basaltic rocks of Antarctica, South Africa, South America and Tasmania. GEOCHIM COSMOCHIM ACT A 32, 129–49.CrossRefGoogle Scholar
Czamanske, G. K. & Moore, J. G. 1977. Composition and phase chemistry of sulfide globules in basalt from the Mid-Atlantic Ridge rift valley near 37°N lat. BULL GEOL SOC AM 88, 587–99.2.0.CO;2>CrossRefGoogle Scholar
Desborough, G. A., Anderson, A. T. & Wright, T. L. 1968. Mineralogy of sulfides from certain Hawaiian basalts. ECON GEOL 63, 636–44.CrossRefGoogle Scholar
Duke, J. M. 1979. Computer simulation of the fractionation of olivine and sulfide from mafic and ultramafic magmas. CAN MINERAL 17, 507–14.Google Scholar
Dunham, A. C. & Kaye, M. J. 1965. The petrology of the Little Whin Sill, County Durham. PROC YORKSHIRE GEOL SOC 35, 229–76.CrossRefGoogle Scholar
Eales, H. V. & Robey, J. van A. 1976. Differentiation of tholeiitic Karroo magma at Birds River, South Africa. CONTRIB MINERAL PETROL 56, 101–17.CrossRefGoogle Scholar
Engel, A. E. J., Engel, C. G. & Havens, R. G. 1965. Chemical characteristics of oceanic basalts and the upper mantle. BULL GEOL SOC AM 76, 719–34.CrossRefGoogle Scholar
Faure, G., Bowman, J. R., Elliot, D. H. & Jones, L. M. 1974. Strontium isotope composition and petrogenesis of the Kirkpatrick Basalt, Queen Alexandra Range, Antarctica. CONTR MINERAL PETROL 48, 153–69.CrossRefGoogle Scholar
Fleischer, M. 1968. Variation of the ratio Ni/Co in igneous rock series. WASHINGTON ACAD SCI J 58, 108–17.Google Scholar
Forsyth, I. H. & Chisholm, J. I. 1977. The Geology of East Fife. MEM GEOL SURV G B.Google Scholar
Francis, E. H. 1963. Quartz-dolerite sill. In Anderson, F. W.The Geological Survey bore at Rashiehill, Stirlingshire (1951). BULL GEOL SURV G B 20, 43106.Google Scholar
Francis, E. H. 1978. The Midland Valley as a rift, seen in connection with the late Palaeozoic European rift system. In Ramberg, I. B. & Neumann, E-R. (eds) Tectonics and Geophysics of Continental Rifts, 133–47. Dordrecht: Reidel.CrossRefGoogle Scholar
Francis, E. H., Forsyth, I. H., Read, W. A. & Armstrong, M. 1970. The Geology of the Stirling District. MEM GEOL SURV G B.Google Scholar
Frey, F. A., Green, D. H. & Roy, S. D. 1978. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data. J PETROL 19, 463513.CrossRefGoogle Scholar
Gottfried, D., Greenland, L. P. & Campbell, E. Y. 1968. Variation of Nb-Ta, Zr-Hf, Th-U and K-Cs in two diabase-granophyre suites. GEOCHIM COSMOCHIM ACTA 32, 925–47.CrossRefGoogle Scholar
Gottfried, D., Annell, C. S. & Schwarz, L. J. 1978. Geochemistry of subsurface basalt from the deep corehole (Clubhouse Crossroads Corehole 1) near Charleston, South Carolina–magma type and tectonic implications. PROF PAP U S GEOL SURV 1028–G.Google Scholar
Green, D. H. & Ringwood, A. E. 1967. The genesis of basaltic magmas. CONTRIB MINERAL PETROL 15, 103–90.CrossRefGoogle Scholar
Guppy, E. M. & Sabine, P. A. 1956. Chemical analyses of igneous rocks, metamorphic rocks and minerals. MEM GEOL SURV GB.Google Scholar
Hanson, G. N. 1977. Geochemical evolution of the suboceanic mantle. J GEOL SOC LONDON 134, 235–53.CrossRefGoogle Scholar
Harrison, R. K. 1968. Petrology of the Little and Great Whin sills in the Woodland Borehole, Co. Durham. BULL GEOL SURV G B 28, 3854.Google Scholar
Haskin, L. A., Haskin, M. A., Frey, F. A. & Wildeman, T. R. 1968. Relative and absolute terrestrial abundances of the rare earths. In Ahrens, L. H. (ed) Origin and Distribution of the Elements, 889912. Oxford: Pergamon.CrossRefGoogle Scholar
Hawkesworth, C. J. & Vollmer, R. 1979. Crustal contamination versus enriched mantle: 143Nd/144Nd and 87Sr/86Sr evidence from the Italian volcanics. CONTRIB MINERAL PETROL 69, 151–65.CrossRefGoogle Scholar
Helmke, P. A. & Haskin, L. A. 1973. Rare-earth elements, Co, Sc and Hf in the Steens Mountain basalts. GEOCHIM COSHOCHIM ACTA 37, 1513–29.CrossRefGoogle Scholar
Hjelmqvist, S. 1939. Some post-Silurian dykes in Scania and problems suggested by them. SVER GEOL UNDERS C. 430.Google Scholar
Irving, A. J. 1978. A review of experimental studies of crystal/liquid trace element partitioning. GEOCHIM COSMOCHIM ACTA 42, 743–70.CrossRefGoogle Scholar
Jamieson, B. G. & Clarke, D. B. 1970. Potassium and associated elements in tholeiitic basalts. J PETROL 11, 183204.CrossRefGoogle Scholar
Leeman, W. P. 1976. Petrogenesis of McKinney (Snake River) olivine tholeiite in light of rare-earth element and Cr/Ni distributions. BULL GEOL SOC AM 87, 1582–86.2.0.CO;2>CrossRefGoogle Scholar
Leeman, W. P. 1977. Comparison of Rb/Sr, U/Pb, and rare earth characteristics of sub-continental and sub-oceanic mantle regions. BULL OREGON DEP GEOL MIN IND 96, 149–68.Google Scholar
le Roex, A. P. & Reid, D. L. 1978. Geochemistry of Karroo dolerite sills in the Calvinia district, Western Cape Province, South Africa. CONTRIB MINERAL PETROL 66, 351–60.CrossRefGoogle Scholar
Lo, H. H. & Goles, G. G. 1976. Compositions of Formosan basalts and aspects of their petrogeneses. Lithos 9, 149–59.CrossRefGoogle Scholar
Macdonald, R. 1980. Trace element evidence for mantle heterogeneity beneath the Scottish Midland Valley in the Carboniferous and Permian. PHIL TRANS R SOC LONDON A 297, 245–57.Google Scholar
MacGregor, M. & MacGregor, A. G. 1948. The Midland Valley of Scotland. BRITISH REGIONAL GEOLOGY. Edinburgh: H.M.S.O.Google Scholar
McDougall, I. 1964. Differentiation of the Great Lake dolerite sheet, Tasmania: J GEOL SOC AUSTRALIA 11, 107132.CrossRefGoogle Scholar
McDougall, I. 1976. Geochemistry and origin of basalt of the Columbia River Group, Oregon and Washington. BULL GEOL SOC AM 87, 777–92.2.0.CO;2>CrossRefGoogle Scholar
Mysen, B. O. 1978. Experimental determination of crystal-vapor partition coefficients for rare earth elements to 30 Kbar pressure. CARNEGIE INST WASHINGTON YEARB 77, 689–95.Google Scholar
Pearce, J. A. & Norry, M. J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. EARTH PLANET SCI LETT 69, 3347.Google Scholar
Ragland, P. C, Brunfelt, A. O. & Weigand, P. W. 1971. Rare-earth abundances in Mesozoic dolerite dykes from Eastern United States. In Brunfelt, A. O. & Steinnes, E. (eds) Activation Analysis in Geochemistry and Cosmochemistry, 227–35. Oslo: Universitetsforlaget.Google Scholar
Schock, H. H. 1979. Distribution of rare-earth and other trace elements in magnetites. CHEM GEOL 26, 119–33.CrossRefGoogle Scholar
Shapiro, L. 1975. Rapid analysis of silicate, carbonate and phosphate rocks. U S GEOL SURV BULL 1401.Google Scholar
Smith, R. C. II, Rose, A. W. & Lanning, R. M. 1975. Geology and geochemistry of Triassic diabase in Pennsylvania. BULL GEOL SOC AM 86, 943–55.2.0.CO;2>CrossRefGoogle Scholar
Thompson, R. N., Gibson, I. L., Marriner, G. F., Mattey, D. P. & Morrison, M. A. 1980. Trace-element evidence of multistage mantle fusion and polybaric fractional crystallization in the Palaeocene lavas of Skye, NW Scotland. J PETROL 21, 265–93.CrossRefGoogle Scholar
Walker, F. 1934. A preliminary account of the quartz-dolerite dykes of Perthshire. TRANS PROC PERTHSHIRE SOC NAT SCI 9, 109–17.Google Scholar
Walker, F. 1935. The late Palaeozoic quartz-dolerites and tholeiites of Scotland. MINERAL MAG 24, 131–59.Google Scholar
Walker, F. 1952. Differentiation in a quartz-dolerite sill at Northfield Quarry, Stirlingshire. TRANS EDINBURGH GEOL SOC 15, 393405.CrossRefGoogle Scholar
Walker, F, 1964. A comparative survey of four tholeiitic magma provinces. In Subramanian, A. P. & Balakrishna, S. (eds) Advancing Frontiers in Geology and Geophysics, 309–26. Hyderabad: Indian Geophysical Union.Google Scholar
Walker, F. 1965. The part played by tholeiitic magma in the Carbo-Permian vulcanicity of central Scotland. MINERAL MAG 34, 498516.Google Scholar
Walker, F., Vincent, H. C. G. & Mitchell, R. L. 1952. The chemistry and mineralogy of the Kinkell tholeiite, Stirlingshire. MINERAL MAG 29, 895908.Google Scholar
Weigand, P. W. 1975. Geochemistry of the Oslo basaltic rocks. SKR NORSKE VIDENSK-AKAD OSLO. I. MAT-NATURV KL N. S. No. 34.Google Scholar
Weigand, P. W. & Ragland, P. C. 1970. Geochemistry of Mesozoic dolerite dykes from Eastern North America. CONTRIB MINERAL PETROL 29, 195214.CrossRefGoogle Scholar
Weill, D. F. & McKay, G. A. 1975. The partitioning of Mg, Fe, Sr, Ce, Sm, Eu and Yb in lunar igneous systems and a possible origin of KREEP by equilibrium partial melting. Proc. Sixth Lunar Sci Conf., 1143–58. GEOCHIM COSMOCHIM ACTA SUPPL 6.Google Scholar
Wilkinson, J. F. G. & Binns, R. A. 1977. Relatively iron-rich lherzolite xenoliths of the Cr-diopside suite; a guide to the primary nature of anorogenic tholeiitic andesite magmas. CON-TRIB MINERAL PETROL 65, 199212.CrossRefGoogle Scholar
Wood, D. A. 1978. Major and trace element variations in the Tertiary lavas of Eastern Iceland and their significance with respect to the Iceland geochemical anomaly. J PETROL 19, 393436.CrossRefGoogle Scholar
Wood, D. A. 1979. Dynamic partial melting: its application to the petrogeneses of basalts erupted in Iceland, the Faeroe Islands, the Isle of Skye (Scotland) and the Troodos Massif (Cyprus). GEOCHIM COSMOCHIM ACTA 43, 1031–46.CrossRefGoogle Scholar
Wright, T. L. and Peck, D. L. 1978. Crystallization and differentia-tion of the Alae magma, Alae Lava Lake, Hawaii. PROF PAP U S GEOL SURV 935–C.Google Scholar
Yoder, H. S. Jr., 1976. Generation of basaltic magma. Washington D.C.: National Academy of Sciences.Google Scholar