Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T01:46:19.168Z Has data issue: false hasContentIssue false

Dysplasticity, metaplasticity, and schizophrenia: Implications for risk, illness, and novel interventions

Published online by Cambridge University Press:  06 May 2015

Matcheri S. Keshavan*
Affiliation:
Harvard Medical School
Urvakhsh Meherwan Mehta
Affiliation:
Harvard Medical School National Institute of Mental Health and Neurosciences, Bangalore, India
Jaya L. Padmanabhan
Affiliation:
Harvard Medical School
Jai L. Shah
Affiliation:
McGill University
*
Address correspondence and reprint requests to: Matcheri S. Keshavan, Massachusetts Mental Health Center, Room 610, Harvard Medical School, 75 Fenwood Road, Boston, MA 02115; E-mail: [email protected].

Abstract

In this paper, we review the history of the concept of neuroplasticity as it relates to the understanding of neuropsychiatric disorders, using schizophrenia as a case in point. We briefly review the myriad meanings of the term neuroplasticity, and its neuroscientific basis. We then review the evidence for aberrant neuroplasticity and metaplasticity associated with schizophrenia as well as the risk for developing this illness, and discuss the implications of such understanding for prevention and therapeutic interventions. We argue that the failure and/or altered timing of plasticity of critical brain circuits might underlie cognitive and deficit symptoms, and may also lead to aberrant plastic reorganization in other circuits, leading to affective dysregulation and eventually psychosis. This “dysplastic” model of schizophrenia can suggest testable etiology and treatment-relevant questions for the future.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, W. C. (2008). Metaplasticity: Tuning synapses and networks for plasticity. Nature Reviews Neuroscience, 9, 387.CrossRefGoogle ScholarPubMed
Abraham, W. C., & Bear, M. F. (1996). Metaplasticity: The plasticity of synaptic plasticity. Trends in Neurosciences, 19, 126–30.CrossRefGoogle ScholarPubMed
Addington, J., Stowkowy, J., Cadenhead, K. S., Cornblatt, B. A., McGlashan, T. H., Perkins, D. O., et al. (2013). Early traumatic experiences in those at clinical high risk for psychosis. Early Intervention in Psychiatry, 7, 300305.CrossRefGoogle ScholarPubMed
Akbarian, S., Kim, J. J., Potkin, S. G., Hagman, J. O., Tafazzoli, A., Bunney, W. E., et al. (1995). Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Archives of General Psychiatry, 52, 258266.CrossRefGoogle ScholarPubMed
Alarcon, J. M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E. R., et al. (2004). Chromatin acetylation, memory, and LTP are impaired in CBP+ /– mice: A model for the cognitive deficit in Rubinstein–Taybi syndrome and its amelioration. Neuron, 42, 947959.CrossRefGoogle Scholar
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell. New York: Garland Science.Google Scholar
Amad, A., Cachia, A., Gorwood, P., Pins, D., Delmaire, C., Rolland, B., et al. (2014). The multimodal connectivity of the hippocampal complex in auditory and visual hallucinations. Molecular Psychiatry, 19, 184191.CrossRefGoogle ScholarPubMed
Anderson, S. A., Classey, J. D., Conde, F., Lund, J. S., & Lewis, D. A. (1995). Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex. Neuroscience, 67, 722.CrossRefGoogle ScholarPubMed
Andrade, K. C., Spoormaker, V. I., Dresler, M., Wehrle, R., Holsboer, F., Samann, P. G., et al. (2011). Sleep spindles and hippocampal functional connectivity in human NREM sleep. Journal of Neuroscience, 31, 1033110339.CrossRefGoogle ScholarPubMed
Andreasen, N. C., Liu, D., Ziebell, S., Vora, A., & Ho, B. C. (2013). Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: A prospective longitudinal MRI study. American Journal of Psychiatry, 170, 609615.CrossRefGoogle ScholarPubMed
Baig, B. J., Whalley, H. C., Hall, J., McIntosh, A. M., Job, D. E., Cunningham-Owens, D. G., et al. (2010). Functional magnetic resonance imaging of BDNF val66met polymorphism in unmedicated subjects at high genetic risk of schizophrenia performing a verbal memory task. Psychiatry Research, 183, 195201.CrossRefGoogle ScholarPubMed
Baldeweg, T., & Hirsch, S. R. (2014). Mismatch negativity indexes illness-specific impairments of cortical plasticity in schizophrenia: A comparison with bipolar disorder and Alzheimer's disease. International Journal of Psychophysiology. Advance online publication.Google ScholarPubMed
Balu, D. T., & Coyle, J. T. (2011). Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neuroscience & Biobehavioral Reviews, 35, 848870.CrossRefGoogle Scholar
Barr, M. S., Farzan, F., Rajji, T. K., Voineskos, A. N., Blumberger, D. M., Arenovich, T., et al. (2013). Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial. Biological Psychiatry, 73, 510517.CrossRefGoogle ScholarPubMed
Barr, M. S., Farzan, F., Rusjan, P. M., Chen, R., Fitzgerald, P. B., & Daskalakis, Z. J. (2009). Potentiation of gamma oscillatory activity through repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex. Neuropsychopharmacology, 34, 23592367.CrossRefGoogle ScholarPubMed
Beech, R. D., Leffert, J. J., Lin, A., Sylvia, L. G., Umlauf, S., Mane, S., et al. (2014). Gene-expression differences in peripheral blood between lithium responders and non-responders in the Lithium Treatment—Moderate dose Use Study (LiTMUS). Pharmacogenomics Journal, 14, 182191.CrossRefGoogle ScholarPubMed
Benarroch, E. E. (2013). Adult neurogenesis in the dentate gyrus: General concepts and potential implications. Neurology, 81, 14431452.CrossRefGoogle ScholarPubMed
Bennett, M. R. (2011). Schizophrenia: Susceptibility genes, dendritic-spine pathology and gray matter loss. Progress in Neurobiology, 95, 275300.CrossRefGoogle ScholarPubMed
Berrios, G. E. (2001). The factors of insanities: J. Hughlings Jackson. Classic text no. 47. History of Psychiatry, 12, 353373.Google Scholar
Bitanihirwe, B. K., & Woo, T. U. (2014). Perineuronal nets and schizophrenia: The importance of neuronal coatings. Neuroscience & Biobehavioral Reviews, 45C, 8599.CrossRefGoogle Scholar
Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361, 3139.CrossRefGoogle ScholarPubMed
Borges, S., Gayer-Anderson, C., & Mondelli, V. (2013). A systematic review of the activity of the hypothalamic–pituitary–adrenal axis in first episode psychosis. Psychoneuroendocrinology, 38, 603611.CrossRefGoogle ScholarPubMed
Borgwardt, S. J., McGuire, P. K., Aston, J., Berger, G., Dazzan, P., Gschwandtner, U., et al. (2007). Structural brain abnormalities in individuals with an at-risk mental state who later develop psychosis. British Journal of Psychiatry, 191(Suppl. 51), s69s75.CrossRefGoogle Scholar
Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., & Silva, A. J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 79, 5968.CrossRefGoogle ScholarPubMed
Bradley, C. A., Peineau, S., Taghibiglou, C., Nicolas, C. S., Whitcomb, D. J., Bortolotto, Z. A., et al. (2012). A pivotal role of GSK-3 in synaptic plasticity. Frontiers in Molecular Neuroscience, 5, 13.CrossRefGoogle ScholarPubMed
Braff, D. L., Geyer, M. A., & Swerdlow, N. R. (2001). Human studies of prepulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies. Psychopharmacology, 156, 234258.CrossRefGoogle ScholarPubMed
Brennand, K. J., Simone, A., Jou, J., Gelboin-Burkhart, C., Tran, N., Sangar, S., et al. (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature, 473, 221225.CrossRefGoogle ScholarPubMed
Brown, A. S., & Derkits, E. J. (2010). Prenatal infection and schizophrenia: A review of epidemiologic and translational studies. American Journal of Psychiatry, 167, 261280.CrossRefGoogle ScholarPubMed
Brunelin, J., Amato, T., van Os, J., Costes, N., Suaud Chagny, M.-F., & Saoud, M. (2010). Increased left striatal dopamine transmission in unaffected siblings of schizophrenia patients in response to acute metabolic stress. Psychiatry Research, 181, 130135.CrossRefGoogle ScholarPubMed
Brunelin, J., Mondino, M., Gassab, L., Haesebaert, F., Gaha, L., Suaud-Chagny, M. F., et al. (2012). Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. American Journal of Psychiatry, 169, 719724.CrossRefGoogle ScholarPubMed
Buckley, P. F., Pillai, A., & Howell, K. R. (2011). Brain-derived neurotrophic factor: Findings in schizophrenia. Current Opinion in Psychiatry, 24, 122127.CrossRefGoogle ScholarPubMed
Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149186.CrossRefGoogle ScholarPubMed
Butefisch, C. M., Davis, B. C., Wise, S. P., Sawaki, L., Kopylev, L., Classen, J., et al. (2000). Mechanisms of use-dependent plasticity in the human motor cortex. Proceedings of the National Academy of Sciences, 97, 36613665.CrossRefGoogle ScholarPubMed
Cajal, S. R. (1894). The Croonian Lecture: La fine structure des centres nerveux. Proceedings of the Royal Society of London, 55, 331335.Google Scholar
Calabrese, F., Richetto, J., Racagni, G., Feldon, J., Meyer, U., & Riva, M. A. (2013). Effects of withdrawal from repeated amphetamine exposure in peri-puberty on neuroplasticity-related genes in mice. Neuroscience, 250, 222231.CrossRefGoogle ScholarPubMed
Cavus, I., Reinhart, R. M., Roach, B. J., Gueorguieva, R., Teyler, T. J., Clapp, W. C., et al. (2012). Impaired visual cortical plasticity in schizophrenia. Biological Psychiatry, 71, 512520.CrossRefGoogle ScholarPubMed
Chen, S. L., Lee, S. Y., Chang, Y. H., Chen, S. H., Chu, C. H., Wang, T. Y., et al. (2014). The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese patients with bipolar disorder and schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 51, 99104.CrossRefGoogle Scholar
Chohan, T. W., Boucher, A. A., Spencer, J. R., Kassem, M. S., Hamdi, A. A., Karl, T., et al. (2014). Partial genetic deletion of neuregulin 1 modulates the effects of stress on sensorimotor gating, dendritic morphology, and HPA axis activity in adolescent mice. Schizophrenia Bulletin. Advance online publication.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Toth, S. L. (2009). The past achievements and future promises of developmental psychopathology: The coming of age of a discipline. Journal of Child Psychology and Psychiatry and Allied Disciplines, 50, 1625.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Tucker, D. (1994). Development and self-regulatory structures of the mind. Development and Psychopathology, 6, 533549.CrossRefGoogle Scholar
Clapp, W. C., Hamm, J. P., Kirk, I. J., & Teyler, T. J. (2012). Translating long-term potentiation from animals to humans: A novel method for noninvasive assessment of cortical plasticity. Biological Psychiatry, 71, 496502.CrossRefGoogle ScholarPubMed
Clapp, W. C., Kirk, I. J., Hamm, J. P., Shepherd, D., & Teyler, T. J. (2005). Induction of LTP in the human auditory cortex by sensory stimulation. European Journal of Neuroscience, 22, 11351140.CrossRefGoogle ScholarPubMed
Clapp, W. C., Zaehle, T., Lutz, K., Marcar, V. L., Kirk, I. J., Hamm, J. P., et al. (2005). Effects of long-term potentiation in the human visual cortex: A functional magnetic resonance imaging study. NeuroReport, 16, 19771980.CrossRefGoogle ScholarPubMed
Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. Journal of Neurophysiology, 79, 11171123.CrossRefGoogle ScholarPubMed
Cohen, A. S., Coussens, C. M., Raymond, C. R., & Abraham, W. C. (1999). Long-lasting increase in cellular excitability associated with the priming of LTP induction in rat hippocampus. Journal of Neurophysiology, 82, 31393148.CrossRefGoogle ScholarPubMed
Collingridge, G. L., Peineau, S., Howland, J. G., & Wang, Y. T. (2010). Long-term depression in the CNS. Nature Reviews Neuroscience, 11, 459473.CrossRefGoogle ScholarPubMed
Collip, D., Myin-Germeys, I., & van Os, J. (2008). Does the concept of “sensitization” provide a plausible mechanism for the putative link between the environment and schizophrenia? Schizophrenia Bulletin, 34, 220225.CrossRefGoogle ScholarPubMed
Crapse, T. B., & Sommer, M. A. (2008). Corollary discharge across the animal kingdom. Nature Reviews Neuroscience, 9, 587600.CrossRefGoogle ScholarPubMed
Critchlow, H. M., Maycox, P. R., Skepper, J. N., & Krylova, O. (2006). Clozapine and haloperidol differentially regulate dendritic spine formation and synaptogenesis in rat hippocampal neurons. Molecular and Cellular Neurosciences, 32, 356365.CrossRefGoogle ScholarPubMed
Cui, K., Ashdown, H., Luheshi, G. N., & Boksa, P. (2009). Effects of prenatal immune activation on hippocampal neurogenesis in the rat. Schizophrenia Research, 113, 288297.CrossRefGoogle ScholarPubMed
Daoudal, G., & Debanne, D. (2003). Long-term plasticity of intrinsic excitability: Learning rules and mechanisms. Learning and Memory, 10, 456465.CrossRefGoogle ScholarPubMed
Daskalakis, Z. J., Christensen, B. K., Fitzgerald, P. B., & Chen, R. (2008). Dysfunctional neural plasticity in patients with schizophrenia. Archives of General Psychiatry, 65, 378385.CrossRefGoogle ScholarPubMed
Dauvermann, M. R., Whalley, H. C., Romaniuk, L., Valton, V., Owens, D. G. C., Johnstone, E. C., et al. (2013). The application of nonlinear dynamic causal modelling for fMRI in subjects at high genetic risk of schizophrenia. NeuroImage, 73, 1629.CrossRefGoogle ScholarPubMed
Dazzan, P., Morgan, K. D., Orr, K., Hutchinson, G., Chitnis, X., Suckling, J., et al. (2005). Different effects of typical and atypical antipsychotics on grey matter in first episode psychosis: The AESOP study. Neuropsychopharmacology, 30, 765774.CrossRefGoogle ScholarPubMed
de la Fuente-Sandoval, C., León-Ortiz, P., Favila, R., Stephano, S., Mamo, D., Ramírez-Bermúdez, J., et al. . (2011). Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis. Neuropsychopharmacology, 36, 17811791.CrossRefGoogle ScholarPubMed
De Miranda, J., Yaddanapudi, K., Hornig, M., Villar, G., Serge, R., & Lipkin, W. I. (2010). Induction of toll-like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances. mBio, 1, e00176e00210.CrossRefGoogle ScholarPubMed
Demirtas-Tatlidede, A., Freitas, C., Cromer, J. R., Safar, L., Ongur, D., Stone, W. S., et al. (2010). Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophrenia Research, 124, 91100.CrossRefGoogle ScholarPubMed
Deng, M. Y., McAlonan, G. M., Cheung, C., Chiu, C. P., Law, C. W., Cheung, V., et al. (2009). A naturalistic study of grey matter volume increase after early treatment in anti-psychotic naive, newly diagnosed schizophrenia. Psychopharmacology, 206, 437446.CrossRefGoogle ScholarPubMed
Dierks, T., Linden, D. E., Jandl, M., Formisano, E., Goebel, R., Lanfermann, H., et al. (1999). Activation of Heschl's gyrus during auditory hallucinations. Neuron, 22, 615621.CrossRefGoogle ScholarPubMed
Dlabac-de Lange, J. J., Knegtering, R., & Aleman, A. (2010). Repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia: Review and meta-analysis. Journal of Clinical Psychiatry, 71, 411418.CrossRefGoogle ScholarPubMed
Doorduin, J., de Vries, E. F., Willemsen, A. T., de Groot, J. C., Dierckx, R. A., & Klein, H. C. (2009). Neuroinflammation in schizophrenia-related psychosis: A PET study. Journal of Nuclear Medicine, 50, 18011807.CrossRefGoogle ScholarPubMed
Duan, X., Chang, J. H., Ge, S., Faulkner, R. L., Kim, J. Y., Kitabatake, Y., et al. (2007). Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain Cell, 130, 11461158.CrossRefGoogle ScholarPubMed
Duncan, L. E., Holmans, P. A., Lee, P. H., O'Dushlaine, C. T., Kirby, A. W., Smoller, J. W., et al. (2014). Pathway analyses implicate glial cells in schizophrenia. PLOS ONE, 9, e89441.CrossRefGoogle ScholarPubMed
Eack, S. M., Greenwald, D. P., Hogarty, S. S., & Keshavan, M. S. (2010). One-year durability of the effects of cognitive enhancement therapy on functional outcome in early schizophrenia. Schizophrenia Research, 120, 210216.CrossRefGoogle Scholar
Eack, S. M., Hogarty, G. E., Cho, R. Y., Prasad, K. M., Greenwald, D. P., Hogarty, S. S., et al. (2010). Neuroprotective effects of cognitive enhancement therapy against gray matter loss in early schizophrenia: Results from a 2-year randomized controlled trial. Archives of General Psychiatry, 67, 674682.CrossRefGoogle ScholarPubMed
Earls, L. R., Bayazitov, I. T., Fricke, R. G., Berry, R. B., Illingworth, E., Mittleman, G., et al. (2010). Dysregulation of presynaptic calcium and synaptic plasticity in a mouse model of 22q11 deletion syndrome. Journal of Neuroscience, 30, 1584315855.CrossRefGoogle Scholar
Earls, L. R., & Zakharenko, S. S. (2013). A synaptic function approach to investigating complex psychiatric diseases. Neuroscientist, 20, 257271.CrossRefGoogle ScholarPubMed
Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257269.CrossRefGoogle ScholarPubMed
Ehrenreich, H., Hinze-Selch, D., Stawicki, S., Aust, C., Knolle-Veentjer, S., Wilms, S., et al. (2007). Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin. Molecular Psychiatry, 12, 206220.CrossRefGoogle ScholarPubMed
Eisch, A. J., Cameron, H. A., Encinas, J. M., Meltzer, L. A., Ming, G. L., & Overstreet-Wadiche, L. S. (2008). Adult neurogenesis, mental health, and mental illness: Hope or hype? Journal of Neuroscience, 28, 1178511791.CrossRefGoogle ScholarPubMed
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108, 30173022.CrossRefGoogle ScholarPubMed
Fatemi, S. H., & Folsom, T. D. (2009). The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophrenia Bulletin, 35, 528548.CrossRefGoogle ScholarPubMed
Favalli, G., Li, J., Belmonte-de-Abreu, P., Wong, A. H., & Daskalakis, Z. J. (2012). The role of BDNF in the pathophysiology and treatment of schizophrenia. Journal of Psychiatric Research, 46, 111.CrossRefGoogle ScholarPubMed
Feinberg, I. (1982). Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research, 17, 319334.CrossRefGoogle ScholarPubMed
Fett, A. K., Viechtbauer, W., Dominguez, M. D., Penn, D. L., van Os, J., & Krabbendam, L. (2011). The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: A meta-analysis. Neuroscience & Biobehavioral Reviews, 35, 573588.CrossRefGoogle ScholarPubMed
Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T., & Lu, B. (1996). Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature, 381, 706709.CrossRefGoogle ScholarPubMed
Filosa, A., Paixao, S., Honsek, S. D., Carmona, M. A., Becker, L., Feddersen, B., et al. (2009). Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nature Neuroscience, 12, 12851292.CrossRefGoogle ScholarPubMed
Fitzgerald, P. B., Brown, T. L., Marston, N. A., Oxley, T., De Castella, A., Daskalakis, Z. J., et al. (2004). Reduced plastic brain responses in schizophrenia: A transcranial magnetic stimulation study. Schizophrenia Research, 71, 1726.CrossRefGoogle ScholarPubMed
Fogel, S., Martin, N., Lafortune, M., Barakat, M., Debas, K., Laventure, S., et al. (2012). NREM sleep oscillations and brain plasticity in aging. Frontiers in Neurology, 3, 176.CrossRefGoogle ScholarPubMed
Ford, J. M., Palzes, V. A., Roach, B. J., Potkin, S. G., van Erp, T. G., Turner, J. A., et al. (2014). Visual hallucinations are associated with hyperconnectivity between the amygdala and visual cortex in people with a diagnosis of schizophrenia. Schizophrenia Bulletin. Advance online publication.Google ScholarPubMed
Frantseva, M. V., Fitzgerald, P. B., Chen, R., Moller, B., Daigle, M., & Daskalakis, Z. J. (2008). Evidence for impaired long-term potentiation in schizophrenia and its relationship to motor skill learning. Cerebral Cortex, 18, 990996.CrossRefGoogle ScholarPubMed
Fusar-Poli, P., Bechdolf, A., Taylor, M. J., Bonoldi, I., Carpenter, W. T., Yung, A. R., et al. (2013). At risk for schizophrenic or affective psychoses? A meta-analysis of DSM/ICD diagnostic outcomes in individuals at high clinical risk. Schizophrenia Bulletin, 39, 923932.CrossRefGoogle ScholarPubMed
Fusar-Poli, P., Stone, J. M., Broome, M. R., Valli, I., Mechelli, A., McLean, M. A., et al. (2011). Thalamic glutamate levels as a predictor of cortical response during executive functioning in subjects at high risk for psychosis. Archives of General Psychiatry, 68, 881890.CrossRefGoogle ScholarPubMed
Gan, J. O., Bowline, E., Lourenco, F. S., & Pickel, V. M. (2014). Adolescent social isolation enhances the plasmalemmal density of NMDA NR1 subunits in dendritic spines of principal neurons in the basolateral amygdala of adult mice. Neuroscience, 258, 174183.CrossRefGoogle ScholarPubMed
Gee, D. G., Karlsgodt, K. H., van Erp, T. G. M., Bearden, C. E., Lieberman, M. D., Belger, A., et al. (2012). Altered age-related trajectories of amygdala-prefrontal circuitry in adolescents at clinical high risk for psychosis: A preliminary study. Schizophrenia Research, 134, 19.CrossRefGoogle ScholarPubMed
Gil-Mohapel, J., Boehme, F., Kainer, L., & Christie, B. R. (2010). Hippocampal cell loss and neurogenesis after fetal alcohol exposure: Insights from different rodent models. Brain Research Reviews, 64, 283303.CrossRefGoogle ScholarPubMed
Glantz, L. A., & Lewis, D. A. (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Archives of General Psychiatry, 57, 6573.CrossRefGoogle ScholarPubMed
Gogtay, N. (2008). Cortical brain development in schizophrenia: Insights from neuroimaging studies in childhood-onset schizophrenia. Schizophrenia Bulletin, 34, 3036.CrossRefGoogle ScholarPubMed
Gogtay, N., Greenstein, D., Lenane, M., Clasen, L., Sharp, W., Gochman, P., et al. (2007). Cortical brain development in nonpsychotic siblings of patients with childhood-onset schizophrenia. Archives of General Psychiatry, 64, 772780.CrossRefGoogle ScholarPubMed
Gratacos, M., Gonzalez, J. R., Mercader, J. M., de Cid, R., Urretavizcaya, M., & Estivill, X. (2007). Brain-derived neurotrophic factor Val66Met and psychiatric disorders: Meta-analysis of case-control studies confirm association to substance-related disorders, eating disorders, and schizophrenia. Biological Psychiatry, 61, 911922.CrossRefGoogle ScholarPubMed
Green, M. F., Nuechterlein, K. H., Gold, J. M., Barch, D. M., Cohen, J., Essock, S., et al. (2004). Approaching a consensus cognitive battery for clinical trials in schizophrenia: The NIMH-MATRICS conference to select cognitive domains and test criteria. Biological Psychiatry, 56, 301307.CrossRefGoogle ScholarPubMed
Grillo, R. W., Ottoni, G. L., Leke, R., Souza, D. O., Portela, L. V., & Lara, D. R. (2007). Reduced serum BDNF levels in schizophrenic patients on clozapine or typical antipsychotics. Journal of Psychiatric Research, 41, 3135.CrossRefGoogle ScholarPubMed
Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145173.CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Talge, N. M. (2011). Neuroendocrine measures in developmental research. In Schmidt, L. A. & Segalowitz, S. J. (Eds.), Developmental psychophysiology: Theories, systems, and applications (pp. 343364). Cambridge: Cambridge University Press.Google Scholar
Guse, B., Falkai, P., Gruber, O., Whalley, H., Gibson, L., Hasan, A., et al. (2013). The effect of long-term high frequency repetitive transcranial magnetic stimulation on working memory in schizophrenia and healthy controls—A randomized placebo-controlled, double-blind fMRI study. Behavioural Brain Research, 237, 300307.CrossRefGoogle ScholarPubMed
Guse, B., Falkai, P., & Wobrock, T. (2010). Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: A systematic review. Journal of Neural Transmission, 117, 105122.CrossRefGoogle ScholarPubMed
Hannan, A. J. (2014). Environmental enrichment and brain repair: Harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity. Neuropathology and Applied Neurobiology, 40, 1325.CrossRefGoogle ScholarPubMed
Harrison, P. J. (1999). The neuropathology of schizophrenia: A critical review of the data and their interpretation. Brain, 122, 593624.CrossRefGoogle ScholarPubMed
Harrison, P. J., Law, A. J., & Eastwood, S. L. (2003). Glutamate receptors and transporters in the hippocampus in schizophrenia. Annals of the New York Academy of Sciences, 1003, 94101.CrossRefGoogle ScholarPubMed
Harrison, P. J., & Weinberger, D. R. (2005). Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence. Molecular Psychiatry, 10, 4068.CrossRefGoogle ScholarPubMed
Hasan, A., Aborowa, R., Nitsche, M. A., Marshall, L., Schmitt, A., Gruber, O., et al. (2012). Abnormal bihemispheric responses in schizophrenia patients following cathodal transcranial direct stimulation. European Archives of Psychiatry and Clinical Neuroscience, 262, 415423.CrossRefGoogle ScholarPubMed
Hasan, A., Nitsche, M. A., Herrmann, M., Schneider-Axmann, T., Marshall, L., Gruber, O., et al. (2012). Impaired long-term depression in schizophrenia: A cathodal tDCS pilot study. Brain Stimulation, 5, 475483.CrossRefGoogle ScholarPubMed
Hasan, A., Nitsche, M. A., Rein, B., Schneider-Axmann, T., Guse, B., Gruber, O., et al. (2011). Dysfunctional long-term potentiation-like plasticity in schizophrenia revealed by transcranial direct current stimulation. Behavioural Brain Research, 224, 1522.CrossRefGoogle ScholarPubMed
Hasan, A., Wobrock, T., Rajji, T., Malchow, B., & Daskalakis, Z. J. (2013). Modulating neural plasticity with non-invasive brain stimulation in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 263, 621631.CrossRefGoogle ScholarPubMed
Haut, K. M., Lim, K. O., & MacDonald, III, A. (2010). Prefrontal cortical changes following cognitive training in patients with chronic schizophrenia: Effects of practice, generalization, and specificity. Neuropsychopharmacology, 35, 18501859.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). Organization of behavior: A neuropsychological theory. New York: Wiley.Google Scholar
Henneberger, C., Papouin, T., Oliet, S. H., & Rusakov, D. A. (2010). Long-term potentiation depends on release of D-serine from astrocytes. Nature, 463, 232236.CrossRefGoogle ScholarPubMed
Hoeffer, C. A., & Klann, E. (2010). mTOR signaling: At the crossroads of plasticity, memory and disease. Trends in Neurosciences, 33, 6775.CrossRefGoogle ScholarPubMed
Hoffman, R. E. (2007). A social deafferentation hypothesis for induction of active schizophrenia. Schizophrenia Bulletin, 33, 10661070.CrossRefGoogle ScholarPubMed
Hoffman, R. E. (2008). Auditory/verbal hallucinations, speech perception neurocircuitry, and the social deafferentation hypothesis. Clinical EEG and Neuroscience, 39, 8790.CrossRefGoogle ScholarPubMed
Hoffman, R. E., Boutros, N. N., Berman, R. M., Roessler, E., Belger, A., Krystal, J. H., et al. (1999). Transcranial magnetic stimulation of left temporoparietal cortex in three patients reporting hallucinated “voices.Biological Psychiatry, 46, 130132.CrossRefGoogle ScholarPubMed
Hooker, C. I., Bruce, L., Fisher, M., Verosky, S. C., Miyakawa, A., & Vinogradov, S. (2012). Neural activity during emotion recognition after combined cognitive plus social cognitive training in schizophrenia. Schizophrenia Research, 139, 5359.CrossRefGoogle ScholarPubMed
Hsieh, J., & Eisch, A. J. (2010). Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: Unraveling the genome to understand the mind. Neurobiology of Disease, 39, 7384.CrossRefGoogle ScholarPubMed
Huang, Z. J., Kirkwood, A., Pizzorusso, T., Porciatti, V., Morales, B., Bear, M. F., et al. (1999). BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell, 98, 739755.CrossRefGoogle ScholarPubMed
Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat's striate cortex. Journal of Physiology, 148, 574591.CrossRefGoogle ScholarPubMed
Hubl, D., Koenig, T., Strik, W., Federspiel, A., Kreis, R., Boesch, C., et al. (2004). Pathways that make voices: White matter changes in auditory hallucinations. Archives of General Psychiatry, 61, 658668.CrossRefGoogle ScholarPubMed
Iyengar, B. R., Choudhary, A., Sarangdhar, M. A., Venkatesh, K. V., Gadgil, C. J., & Pillai, B. (2014). Non-coding RNA interact to regulate neuronal development and function. Frontiers in Cellular Neuroscience, 8, 47.CrossRefGoogle ScholarPubMed
James, W. (1890). Principles of psychology. New York: Dover.Google Scholar
Javitt, D. C., Steinschneider, M., Schroeder, C. E., & Arezzo, J. C. (1996). Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: Implications for schizophrenia. Proceedings of the National Academy of Sciences, 93, 1196211967.CrossRefGoogle ScholarPubMed
Jiang, P., Zhu, T., Zhao, W., Shen, J., Yu, Y., Xu, J., et al. (2013). The persistent effects of maternal infection on the offspring's cognitive performance and rates of hippocampal neurogenesis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 44, 279289.CrossRefGoogle ScholarPubMed
Jun, H., Mohammed Qasim Hussaini, S., Rigby, M. J., & Jang, M. H. (2012). Functional role of adult hippocampal neurogenesis as a therapeutic strategy for mental disorders. Neural Plasticity, 2012, 854285.CrossRefGoogle ScholarPubMed
Kanazawa, T., Glatt, S. J., Kia-Keating, B., Yoneda, H., & Tsuang, M. T. (2007). Meta-analysis reveals no association of the Val66Met polymorphism of brain-derived neurotrophic factor with either schizophrenia or bipolar disorder. Psychiatric Genetics, 17, 165170.CrossRefGoogle ScholarPubMed
Kannangara, T. S., Eadie, B. D., Bostrom, C. A., Morch, K., Brocardo, P. S., & Christie, B. R. (2014). GluN2A-/- mice lack bidirectional synaptic plasticity in the dentate gyrus and perform poorly on spatial pattern separation tasks. Cerebral Cortex. Advance online publication.Google ScholarPubMed
Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377, 155158.Google ScholarPubMed
Kato, Y., Muramatsu, T., Kato, M., Shibukawa, Y., Shintani, M., & Mimura, M. (2011). Magnetoencephalography study of right parietal lobe dysfunction of the evoked mirror neuron system in antipsychotic-free schizophrenia. PloS One, 6, e28087.CrossRefGoogle ScholarPubMed
Keshavan, M. S. (1999). Development, disease and degeneration in schizophrenia: A unitary pathophysiological model. Journal of Psychiatric Research, 33, 513521.CrossRefGoogle ScholarPubMed
Keshavan, M. S., Anderson, S., & Pettegrew, J. W. (1994). Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. Journal of Psychiatric Research, 28, 239265.CrossRefGoogle ScholarPubMed
Keshavan, M. S., Eack, S. M., Wojtalik, J. A., Prasad, K. M., Francis, A. N., Bhojraj, T. S., et al. (2011). A broad cortical reserve accelerates response to cognitive enhancement therapy in early course schizophrenia. Schizophrenia Research, 130, 123129.CrossRefGoogle ScholarPubMed
Keshavan, M. S., Montrose, D. M., Miewald, J. M., & Jindal, R. D. (2011). Sleep correlates of cognition in early course psychotic disorders. Schizophrenia Research, 131, 231234.CrossRefGoogle ScholarPubMed
Keshavan, M. S., Vinogradov, S., Rumsey, J., Sherrill, J., & Wagner, A. (2014). Cognitive training in mental disorders: Update and future directions. American Journal of Psychiatry, 171, 510522.CrossRefGoogle ScholarPubMed
Kilgard, M. P. (2012). Harnessing plasticity to understand learning and treat disease. Trends in Neurosciences, 35, 715722.CrossRefGoogle ScholarPubMed
Killgore, W. D., Olson, E. A., & Weber, M. (2013). Physical exercise habits correlate with gray matter volume of the hippocampus in healthy adult humans. Scientific Reports, 3, 3457.CrossRefGoogle ScholarPubMed
Kim, J. J., Foy, M. R., & Thompson, R. F. (1996). Behavioral stress modifies hippocampal plasticity through N-methyl-D-aspartate receptor activation. Proceedings of the National Academy of Sciences, 93, 47504753.CrossRefGoogle ScholarPubMed
Kindler, J., Homan, P., Jann, K., Federspiel, A., Flury, R., Hauf, M., et al. (2013). Reduced neuronal activity in language-related regions after transcranial magnetic stimulation therapy for auditory verbal hallucinations. Biological Psychiatry, 73, 518524.CrossRefGoogle ScholarPubMed
Kleim, J. A., Chan, S., Pringle, E., Schallert, K., Procaccio, V., Jimenez, R., et al. (2006). BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nature Neuroscience, 9, 735737.CrossRefGoogle ScholarPubMed
Klintsova, A. Y., & Greenough, W. T. (1999). Synaptic plasticity in cortical systems. Current Opinion in Neurobiology, 9, 203208.CrossRefGoogle ScholarPubMed
Kobayashi, M., & Pascual-Leone, A. (2003). Transcranial magnetic stimulation in neurology. Lancet Neurology, 2, 145156.CrossRefGoogle ScholarPubMed
Konradi, C., & Heckers, S. (2001). Antipsychotic drugs and neuroplasticity: Insights into the treatment and neurobiology of schizophrenia. Biological Psychiatry, 50, 729742.CrossRefGoogle ScholarPubMed
Kvajo, M., McKellar, H., Drew, L. J., Lepagnol-Bestel, A. M., Xiao, L., Levy, R. J., et al. (2011). Altered axonal targeting and short-term plasticity in the hippocampus of Disc1 mutant mice. Proceedings of the National Academy of Sciences, 108, E1349E1358.CrossRefGoogle ScholarPubMed
Lai, C., & Feng, L. (2004). Neuregulin induces proliferation of neural progenitor cells via PLC/PKC pathway. Biochemical and Biophysical Research Communications, 319, 603611.CrossRefGoogle ScholarPubMed
Laruelle, M., & Abi-Dargham, A. (1999). Dopamine as the wind of the psychotic fire: New evidence from brain imaging studies. Journal of Psychopharmacology, 13, 358371.CrossRefGoogle ScholarPubMed
Lataster, J., Collip, D., Ceccarini, J., Hernaus, D., Haas, D., Booij, L., et al. (2014). Familial lability to psychosis is associated with attenuated dopamine stress signaling in ventromedial prefrontal cortex. Schizophrenia Bulletin, 40, 6677.CrossRefGoogle Scholar
Levenson, J. M., & Sweatt, J. D. (2005). Epigenetic mechanisms in memory formation. Nature Reviews Neuroscience, 6, 108118.CrossRefGoogle ScholarPubMed
Levkovitz, Y., Rabany, L., Harel, E. V., & Zangen, A. (2011). Deep transcranial magnetic stimulation add-on for treatment of negative symptoms and cognitive deficits of schizophrenia: A feasibility study. International Journal of Neuropsychopharmacology, 14, 991996.CrossRefGoogle ScholarPubMed
Lewis, D. A., & Akil, M. (1997). Cortical dopamine in schizophrenia: Strategies for postmortem studies. Journal of Psychiatric Research, 31, 175195.CrossRefGoogle ScholarPubMed
Lieberman, J. A., Sheitman, B. B., & Kinon, B. J. (1997). Neurochemical sensitization in the pathophysiology of schizophrenia: Deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology, 17, 205229.CrossRefGoogle ScholarPubMed
Lieberman, J. A., Tollefson, G. D., Charles, C., Zipursky, R., Sharma, T., Kahn, R. S., et al. (2005). Antipsychotic drug effects on brain morphology in first-episode psychosis. Archives of General Psychiatry, 62, 361370.CrossRefGoogle ScholarPubMed
Lledo, P. M., Alonso, M., & Grubb, M. S. (2006). Adult neurogenesis and functional plasticity in neuronal circuits. Nature Reviews Neuroscience, 7, 179193.CrossRefGoogle ScholarPubMed
Lomo, T. (2003). The discovery of long-term potentiation. Philosophical Transactions of the Royal Society, 358B, 617620.CrossRefGoogle Scholar
Lowthert, L., Leffert, J., Lin, A., Umlauf, S., Maloney, K., Muralidharan, A., et al. (2012). Increased ratio of anti-apoptotic to pro-apoptotic Bcl2 gene-family members in lithium-responders one month after treatment initiation. Biology of Mood & Anxiety Disorders, 2, 15.CrossRefGoogle ScholarPubMed
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the life span on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445.CrossRefGoogle Scholar
Lynch, M. A. (2004). Long-term potentiation and memory. Physiological Reviews, 84, 87136.CrossRefGoogle ScholarPubMed
Ma, D. K., Jang, M. H., Guo, J. U., Kitabatake, Y., Chang, M. L., Pow-Anpongkul, N., et al. (2009). Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 323, 10741077.CrossRefGoogle ScholarPubMed
Malaspina, D. (2001). Paternal factors and schizophrenia risk: De novo mutations and imprinting. Schizophrenia Bulletin, 27, 379393.CrossRefGoogle ScholarPubMed
Malenka, R. C. (2003). Synaptic plasticity and AMPA receptor trafficking. Annals of the New York Academy of Sciences, 1003, 111.CrossRefGoogle ScholarPubMed
Malenka, R. C., & Nicoll, R. A. (1999). Long-term potentiation—A decade of progress? Science, 285, 18701874.CrossRefGoogle ScholarPubMed
Manganas, L. N., Zhang, X., Li, Y., Hazel, R. D., Smith, S. D., Wagshul, M. E., et al. (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318, 980985.CrossRefGoogle ScholarPubMed
Manning, E. E., Ransome, M. I., Burrows, E. L., & Hannan, A. J. (2012). Increased adult hippocampal neurogenesis and abnormal migration of adult-born granule neurons is associated with hippocampal-specific cognitive deficits in phospholipase C-beta1 knockout mice. Hippocampus, 22, 309319.CrossRefGoogle ScholarPubMed
Markham, J. A., & Greenough, W. T. (2004). Experience-driven brain plasticity: Beyond the synapse. Neuron Glia Biology, 1, 351363.CrossRefGoogle ScholarPubMed
Markham, J. A., Mullins, S. E., & Koenig, J. I. (2013). Periadolescent maturation of the prefrontal cortex is sex-specific and is disrupted by prenatal stress. Journal of Comparative Neurology, 521, 18281843.CrossRefGoogle ScholarPubMed
Mathew, I., Gardin, T. M., Tandon, N., Eack, S., Francis, A. N., Seidman, L. J., et al. (2014). Medial temporal lobe structures and hippocampal subfields in psychotic disorders: Findings from the Bipolar–Schizophrenia Network on Intermediate Phenotypes (B-SNIP) Study. JAMA Psychiatry, 71, 769777.CrossRefGoogle ScholarPubMed
Mattai, A. A., Weisinger, B., Greenstein, D., Stidd, R., Clasen, L., Miller, R., et al. (2011). Normalization of cortical gray matter deficits in nonpsychotic siblings of patients with childhood-onset schizophrenia. Journal of the American Academy of Child & Adolescent Psychiatry, 50, 697704.CrossRefGoogle ScholarPubMed
McGrath, J. J., Féron, F. P., Burne, T. H. J., Mackay-Sim, A., & Eyles, D. W. (2003). The neurodevelopmental hypothesis of schizophrenia: A review of recent developments. Annals of Medicine, 35, 8693.CrossRefGoogle ScholarPubMed
McGuire, P. K., Silbersweig, D. A., Wright, I., Murray, R. M., David, A. S., Frackowiak, R. S., et al. (1995). Abnormal monitoring of inner speech: A physiological basis for auditory hallucinations. Lancet, 346, 596600.CrossRefGoogle ScholarPubMed
Mears, R. P., & Spencer, K. M. (2012). Electrophysiological assessment of auditory stimulus-specific plasticity in schizophrenia. Biological Psychiatry, 71, 503511.CrossRefGoogle ScholarPubMed
Medoff, D. R., Holcomb, H. H., Lahti, A. C., & Tamminga, C. A. (2001). Probing the human hippocampus using rCBF: Contrasts in schizophrenia. Hippocampus, 11, 543550.CrossRefGoogle ScholarPubMed
Mehta, U. M., Agarwal, S. M., Kalmady, S. V., Shivakumar, V., Kumar, C. N., Venkatasubramanian, G., et al. (2013). Enhancing putative mirror neuron activity with magnetic stimulation: A single-case functional neuroimaging study. Biological Psychiatry, 74, e1e2.CrossRefGoogle Scholar
Mehta, U. M., Basavaraju, R., Thirthalli, J., & Gangadhar, B. N. (2012). Mirror neuron dysfunction—A neuro-marker for social cognition deficits in drug naive schizophrenia. Schizophrenia Research, 141, 281283.CrossRefGoogle ScholarPubMed
Mehta, U. M., Thirthalli, J., Basavaraju, R., Gangadhar, B. N., & Pascual-Leone, A. (2013). Reduced mirror neuron activity in schizophrenia and its association with theory of mind deficits: Evidence from a transcranial magnetic stimulation study. Schizophrenia Bulletin. Advance online publication.Google ScholarPubMed
Mills, F., Bartlett, T. E., Dissing-Olesen, L., Wisniewska, M. B., Kuznicki, J., Macvicar, B. A., et al. (2014). Cognitive flexibility and long-term depression (LTD) are impaired following β-catenin stabilization in vivo. Proceedings of the National Academy of Sciences, 111, 86318636.CrossRefGoogle ScholarPubMed
Mizrahi, R., Addington, J., Rusjan, P. M., Suridjan, I., Ng, A., Boileau, I., et al. (2012). Increased stress-induced dopamine release in psychosis. Biological Psychiatry, 71, 561567.CrossRefGoogle ScholarPubMed
Moghaddam, B., & Javitt, D. (2012). From revolution to evolution: The glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology, 37, 415.CrossRefGoogle ScholarPubMed
Morgan, C., McKenzie, K., & Fearon, P. (Eds.). (2008). Society and psychosis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Morris, R. G., Anderson, E., Lynch, G. S., & Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319, 774776.CrossRefGoogle ScholarPubMed
Mozzachiodi, R., Lorenzetti, F. D., Baxter, D. A., & Byrne, J. H. (2008). Changes in neuronal excitability serve as a mechanism of long-term memory for operant conditioning. Nature Neuroscience, 11, 11461148.CrossRefGoogle ScholarPubMed
Murray, R. M. (1994). Neurodevelopmental schizophrenia: The rediscovery of dementia praecox. British Journal of Psychiatry, 25(Suppl.), 612.CrossRefGoogle Scholar
Murray, R. M., Lewis, S. W., Owen, M. J., & Foerster, A. (1988). The neurodevelopmental origins of dementia praecox. London: Heinemann Medical Books.Google Scholar
Naoe, Y., Shinkai, T., Hori, H., Fukunaka, Y., Utsunomiya, K., Sakata, S., et al. (2007). No association between the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and schizophrenia in Asian populations: Evidence from a case-control study and meta-analysis. Neuroscience Letters, 415, 108112.CrossRefGoogle ScholarPubMed
Ninan, I., Bath, K. G., Dagar, K., Perez-Castro, R., Plummer, M. R., Lee, F. S., et al. (2010). The BDNF Val66Met polymorphism impairs NMDA receptor-dependent synaptic plasticity in the hippocampus. Journal of Neuroscience, 30, 88668870.CrossRefGoogle ScholarPubMed
Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527, 633639.CrossRefGoogle ScholarPubMed
Niwa, M., Kamiya, A., Murai, R., Kubo, K., Gruber, A. J., Tomita, K., et al. (2010). Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron, 65, 480489.CrossRefGoogle ScholarPubMed
Nordholm, D., Krogh, J., Mondelli, V., Dazzan, P., Pariante, C., & Nordentoft, M. (2013). Pituitary gland volume in patients with schizophrenia, subjects at ultra high-risk of developing psychosis and healthy controls: A systematic review and meta-analysis. Psychoneuroendocrinology, 11, 23942404.CrossRefGoogle Scholar
Nudo, R. J., & Milliken, G. W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. Journal of Neurophysiology, 75, 21442149.CrossRefGoogle ScholarPubMed
Oberman, L., & Pascual-Leone, A. (2013). Changes in plasticity across the life span: Cause of disease and target for intervention. Progress in Brain Research, 207, 91120.CrossRefGoogle Scholar
O'Malley, A., O'Connell, C., Murphy, K. J., & Regan, C. M. (2000). Transient spine density increases in the mid-molecular layer of hippocampal dentate gyrus accompany consolidation of a spatial learning task in the rodent. Neuroscience, 99, 229232.CrossRefGoogle ScholarPubMed
Omrani, A., Melone, M., Bellesi, M., Safiulina, V., Aida, T., Tanaka, K., et al. (2009). Up-regulation of GLT-1 severely impairs LTD at mossy fibre-CA3 synapses. Journal of Physiology, 587, 45754588.CrossRefGoogle ScholarPubMed
Owen, M. J., Donovan, M. C., Thapar, A., & Craddock, N. (2011). Neurodevelopmental hypothesis of schizophrenia. British Journal of Psychiatry, 198, 173175.CrossRefGoogle ScholarPubMed
Oxley, T., Fitzgerald, P. B., Brown, T. L., de Castella, A., Daskalakis, Z. J., & Kulkarni, J. (2004). Repetitive transcranial magnetic stimulation reveals abnormal plastic response to premotor cortex stimulation in schizophrenia. Biological Psychiatry, 56, 628633.CrossRefGoogle ScholarPubMed
Paixao, S., & Klein, R. (2010). Neuron–astrocyte communication and synaptic plasticity. Current Opinion in Neurobiology, 20, 466473.CrossRefGoogle ScholarPubMed
Pajonk, F. G., Wobrock, T., Gruber, O., Scherk, H., Berner, D., Kaizl, I., et al. (2010). Hippocampal plasticity in response to exercise in schizophrenia. Archives of General Psychiatry, 67, 133143.CrossRefGoogle ScholarPubMed
Pandya, C. D., Kutiyanawalla, A., & Pillai, A. (2013). BDNF-TrkB signaling and neuroprotection in schizophrenia. Asian Journal of Psychiatry, 6, 2228.CrossRefGoogle ScholarPubMed
Pang, T. Y., & Hannan, A. J. (2013). Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology, 64, 515528.CrossRefGoogle ScholarPubMed
Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., Phillips, L. J., et al. (2003). Neuroanatomical abnormalities before and after onset of psychosis: A cross-sectional and longitudinal MRI comparison. Lancet, 361, 281288.CrossRefGoogle ScholarPubMed
Papa, M., De Luca, C., Petta, F., Alberghina, L., & Cirillo, G. (2014). Astrocyte–neuron interplay in maladaptive plasticity. Neuroscience & Biobehavioral Reviews, 42, 3554.CrossRefGoogle ScholarPubMed
Papangeli, I., & Scambler, P. (2013). The 22q11 deletion: DiGeorge and velocardiofacial syndromes and the role of TBX1. Wiley Interdisciplinary Review of Developmental Biology, 2, 393403.CrossRefGoogle ScholarPubMed
Pariante, C. M. (2008). Pituitary volume in psychosis: The first review of the evidence. Journal of Psychopharmacology, 22(Suppl. 2), 7681.CrossRefGoogle ScholarPubMed
Park, S. W., Lee, C. H., Cho, H. Y., Seo, M. K., Lee, J. G., Lee, B. J., et al. (2013). Effects of antipsychotic drugs on the expression of synaptic proteins and dendritic outgrowth in hippocampal neuronal cultures. Synapse, 67, 224234.CrossRefGoogle ScholarPubMed
Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nature Reviews Neuroscience, 9, 947957.CrossRefGoogle ScholarPubMed
Penades, R., Pujol, N., Catalan, R., Massana, G., Rametti, G., Garcia-Rizo, C., et al. (2013). Brain effects of cognitive remediation therapy in schizophrenia: A structural and functional neuroimaging study. Biological Psychiatry, 73, 10151023.CrossRefGoogle ScholarPubMed
Peper, J. S., Brouwer, R. M., Boomsma, D. I., Kahn, R. S., & Hulshoff Pol, H. E. (2007). Genetic influences on human brain structure: A review of brain imaging studies in twins. Human Brain Mapping, 28, 464473.CrossRefGoogle ScholarPubMed
Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., et al. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences, 104, 56385643.CrossRefGoogle Scholar
Perez, V. B., Woods, S. W., Roach, B. J., Ford, J. M., McGlashan, T. H., Srihari, V. H., et al. (2014). Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: Forecasting psychosis risk with mismatch negativity. Biological Psychiatry, 75, 459469.CrossRefGoogle ScholarPubMed
Pezawas, L., Verchinski, B. A., Mattay, V. S., Callicott, J. H., Kolachana, B. S., Straub, R. E., et al. (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. Journal of Neuroscience, 24, 1009910102.CrossRefGoogle ScholarPubMed
Pham, K., Nacher, J., Hof, P. R., & McEwen, B. S. (2003). Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. European Journal of Neuroscience, 17, 879886.CrossRefGoogle ScholarPubMed
Pierri, J. N., Volk, C. L., Auh, S., Sampson, A., & Lewis, D. A. (2001). Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. Archives of General Psychiatry, 58, 466473.CrossRefGoogle ScholarPubMed
Pillai, A., Kale, A., Joshi, S., Naphade, N., Raju, M. S., Nasrallah, H., et al. (2010). Decreased BDNF levels in CSF of drug-naive first-episode psychotic subjects: Correlation with plasma BDNF and psychopathology. International Journal of Neuropsychopharmacology, 13, 535539.CrossRefGoogle ScholarPubMed
Piper, M., Beneyto, M., Burne, T. H., Eyles, D. W., Lewis, D. A., & McGrath, J. J. (2012). The neurodevelopmental hypothesis of schizophrenia: Convergent clues from epidemiology and neuropathology. Psychiatric Clinics of North America, 35, 571584.CrossRefGoogle ScholarPubMed
Pirttimaki, T. M., & Parri, H. R. (2013). Astrocyte plasticity: Implications for synaptic and neuronal activity. Neuroscientist, 19, 604615.CrossRefGoogle ScholarPubMed
Pittenger, C. (2013). Disorders of memory and plasticity in psychiatric disease. Dialogues in Clinical NeuroSciences, 15, 455463.CrossRefGoogle ScholarPubMed
Pletnikov, M. V., Ayhan, Y., Nikolskaia, O., Xu, Y., Ovanesov, M. V., Huang, H., et al. (2008). Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Molecular Psychiatry, 13, 173186.CrossRefGoogle ScholarPubMed
Popov, T., Jordanov, T., Rockstroh, B., Elbert, T., Merzenich, M. M., & Miller, G. A. (2011). Specific cognitive training normalizes auditory sensory gating in schizophrenia: A randomized trial. Biological Psychiatry, 69, 465471.CrossRefGoogle ScholarPubMed
Prather, J. F., Peters, S., Nowicki, S., & Mooney, R. (2008). Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature, 451, 305310.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Champagne, F., Meaney, M. J., & Dagher, A. (2004). Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: A positron emission tomography study using [11C]raclopride. Journal of Neuroscience, 24, 28252831.CrossRefGoogle Scholar
Pulver, A. E., Nestadt, G., Goldberg, R., Shprintzen, R. J., Lamacz, M., Wolyniec, P. S., et al. (1994). Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. Journal of Nervous and Mental Disease, 182, 476478.CrossRefGoogle ScholarPubMed
Rabie, T., & Marti, H. H. (2008). Brain protection by erythropoietin: A manifold task. Physiology (Bethesda), 23, 263274.Google ScholarPubMed
Rajji, T. K., Rogasch, N. C., Daskalakis, Z. J., & Fitzgerald, P. B. (2013). Neuroplasticity-based brain stimulation interventions in the study and treatment of schizophrenia: A review. Canadian Journal of Psychiatry: Revue Canadienne de Psychiatrie, 58, 9398.CrossRefGoogle Scholar
Raznahan, A., Greenstein, D., Lee, Y., Long, R., Clasen, L., Gochman, P., et al. (2011). Catechol-o-methyl transferase (COMT) val158met polymorphism and adolescent cortical development in patients with childhood-onset schizophrenia, their non-psychotic siblings, and healthy controls. NeuroImage, 57, 15171523.CrossRefGoogle ScholarPubMed
Reed, A., Riley, J., Carraway, R., Carrasco, A., Perez, C., Jakkamsetti, V., et al. (2011). Cortical map plasticity improves learning but is not necessary for improved performance. Neuron, 70, 121131.CrossRefGoogle Scholar
Rosanova, M., & Ulrich, D. (2005). Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. Journal of Neuroscience, 25, 93989405.CrossRefGoogle ScholarPubMed
Rothstein, J. D. (1996). Excitotoxicity hypothesis. Neurology, 47(Suppl. 2), S19S25; discussion S6.CrossRefGoogle ScholarPubMed
Scherk, H., & Falkai, P. (2006). Effects of antipsychotics on brain structure. Current Opinion in Psychiatry, 19, 145150.CrossRefGoogle ScholarPubMed
Selemon, L. D., Mrzljak, J., Kleinman, J. E., Herman, M. M., & Goldman-Rakic, P. S. (2003). Regional specificity in the neuropathologic substrates of schizophrenia: A morphometric analysis of Broca's area 44 and area 9. Archives of General Psychiatry, 60, 6977.CrossRefGoogle ScholarPubMed
Sergi, M. J., Rassovsky, Y., Widmark, C., Reist, C., Erhart, S., Braff, D. L., et al. (2007). Social cognition in schizophrenia: Relationships with neurocognition and negative symptoms. Schizophrenia Research, 90, 316324.CrossRefGoogle ScholarPubMed
Shah, J., Eack, S. M., Montrose, D. M., Tandon, N., Miewald, J. M., Prasad, K. M., et al. (2012). Multivariate prediction of emerging psychosis in adolescents at high risk for schizophrenia. Schizophrenia Research, 141, 189196.CrossRefGoogle ScholarPubMed
Shah, J., Mizrahi, R., & McKenzie, K. (2011). The four dimensions: A model for the social aetiology of psychosis. British Journal of Psychiatry, 199, 1114.CrossRefGoogle Scholar
Shi, C., Yu, X., Cheung, E. F., Shum, D. H., & Chan, R. C. (2014). Revisiting the therapeutic effect of rTMS on negative symptoms in schizophrenia: A meta-analysis. Psychiatry Research, 215, 505513.CrossRefGoogle ScholarPubMed
Shim, S. S., Hammonds, M. D., Tatsuoka, C., & Feng, I. J. (2012). Effects of 4-weeks of treatment with lithium and olanzapine on long-term potentiation in hippocampal area CA1. Neuroscience Letters, 524, 59.CrossRefGoogle ScholarPubMed
Slotema, C. W., Aleman, A., Daskalakis, Z. J., & Sommer, I. E. (2012). Meta-analysis of repetitive transcranial magnetic stimulation in the treatment of auditory verbal hallucinations: Update and effects after one month. Schizophrenia Research, 142, 4045.CrossRefGoogle ScholarPubMed
Smieskova, R., Fusar-Poli, P., Allen, P., Bendfeldt, K., Stieglitz, R. D., Drewe, J., et al. (2009). The effects of antipsychotics on the brain: What have we learnt from structural imaging of schizophrenia? A systematic review. Current Pharmaceutical Design, 15, 25352549.CrossRefGoogle ScholarPubMed
Sommer, I. E., Clos, M., Meijering, A. L., Diederen, K. M., & Eickhoff, S. B. (2012). Resting state functional connectivity in patients with chronic hallucinations. PLOS ONE, 7, e43516.CrossRefGoogle ScholarPubMed
Spadaro, P. A., & Bredy, T. W. (2012). Emerging role of non-coding RNA in neural plasticity, cognitive function, and neuropsychiatric disorders. Frontiers in Genetics, 3, 132.CrossRefGoogle ScholarPubMed
Stahnisch, F. W., & Nitsch, R. (2002). Santiago Ramon y Cajal's concept of neuronal plasticity: The ambiguity lives on. Trends in Neurosciences, 25, 589591.CrossRefGoogle Scholar
Stephan, K. E., Friston, K. J., & Frith, C. D. (2009). Dysconnection in schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia Bulletin, 35, 509527.CrossRefGoogle ScholarPubMed
Stone, J. M., Day, F., Tsagaraki, H., Valli, I., McLean, M. A., Lythgoe, D. J., et al. (2009). Glutamate dysfunction in people with prodromal symptoms of psychosis: Relationship to gray matter volume. Biological Psychiatry, 66, 533539.CrossRefGoogle ScholarPubMed
Stone, J. M., Howes, O. D., Egerton, A., Kambeitz, J., Allen, P., Lythgoe, D. J., et al. (2010). Altered relationship between hippocampal glutamate levels and striatal dopamine function in subjects at ultra high risk of psychosis. Biological Psychiatry, 68, 599602.CrossRefGoogle ScholarPubMed
Subramaniam, K., Luks, T. L., Fisher, M., Simpson, G. V., Nagarajan, S., & Vinogradov, S. (2012). Computerized cognitive training restores neural activity within the reality monitoring network in schizophrenia. Neuron, 73, 842853.CrossRefGoogle ScholarPubMed
Sugranyes, G., Thompson, J. L., & Corcoran, C. M. (2012). HPA-axis function, symptoms, and medication exposure in youths at clinical high risk for psychosis. Journal of Psychiatric Research, 46, 13891393.CrossRefGoogle ScholarPubMed
Sullivan, P. F. (2005). The genetics of schizophrenia. PLOS Medicine, 2, e212.CrossRefGoogle ScholarPubMed
Szeszko, P. R., Lipsky, R., Mentschel, C., Robinson, D., Gunduz-Bruce, H., Sevy, S., et al. (2005). Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Molecular Psychiatry, 10, 631636.CrossRefGoogle ScholarPubMed
Takesian, A. E., & Hensch, T. K. (2013). Balancing plasticity/stability across brain development. Progress in Brain Research, 207, 334.CrossRefGoogle ScholarPubMed
Tandon, N., Bolo, N. R., Sanghavi, K., Mathew, I. T., Francis, A. N., Stanley, J. A., et al. (2013). Brain metabolite alterations in young adults at familial high risk for schizophrenia using proton magnetic resonance spectroscopy. Schizophrenia Research, 148, 5966.CrossRefGoogle ScholarPubMed
Tandon, R., Keshavan, M. S., & Nasrallah, H. A. (2008). Schizophrenia, “just the facts” what we know in 2008: 2. Epidemiology and etiology. Schizophrenia Research, 102, 118.CrossRefGoogle Scholar
Tartaglia, N., Du, J., Tyler, W. J., Neale, E., Pozzo-Miller, L., & Lu, B. (2001). Protein synthesis-dependent and -independent regulation of hippocampal synapses by brain-derived neurotrophic factor. Journal of Biological Chemistry, 276, 3758537593.CrossRefGoogle ScholarPubMed
Tchernichovski, O., & Wallman, J. (2008). Behavioural neuroscience: Neurons of imitation. Nature, 451, 249250.CrossRefGoogle ScholarPubMed
Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation. Trends in Neurosciences, 29, 148159.CrossRefGoogle ScholarPubMed
Tononi, G., & Cirelli, C. (2014). Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron, 81, 1234.CrossRefGoogle Scholar
Tost, H., Braus, D. F., Hakimi, S., Ruf, M., Vollmert, C., Hohn, F., et al. (2010). Acute D2 receptor blockade induces rapid, reversible remodeling in human cortical-striatal circuits. Nature Neuroscience, 13, 920922.CrossRefGoogle ScholarPubMed
van Dam, D. S., van der Ven, E., Velthorst, E., Selten, J. P., Morgan, C., & de Haan, L. (2012). Childhood bullying and the association with psychosis in non-clinical and clinical samples: A review and meta-analysis. Psychological Medicine, 42, 24632474.CrossRefGoogle ScholarPubMed
van Praag, H., Kempermannx, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2, 266270.CrossRefGoogle ScholarPubMed
van Swam, C., Federspiel, A., Hubl, D., Wiest, R., Boesch, C., Vermathen, P. et al. (2012). Possible dysregulation of cortical plasticity in auditory verbal hallucinations—A cortical thickness study in schizophrenia. Journal of Psychiatric Research, 46, 10151023.CrossRefGoogle ScholarPubMed
Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of Neuroscience, 20, 25802590.CrossRefGoogle ScholarPubMed
Vinogradov, S., Fisher, M., Holland, C., Shelly, W., Wolkowitz, O., & Mellon, S. H. (2009). Is serum brain-derived neurotrophic factor a biomarker for cognitive enhancement in schizophrenia? Biological Psychiatry, 66, 549553.CrossRefGoogle ScholarPubMed
Vizi, E. S. (1979). Presynaptic modulation of neurochemical transmission. Progress in Neurobiology, 12, 181290.CrossRefGoogle ScholarPubMed
Voineskos, D., Rogasch, N. C., Rajji, T. K., Fitzgerald, P. B., & Daskalakis, Z. J. (2013). A review of evidence linking disrupted neural plasticity to schizophrenia. Canadian Journal of Psychiatry: Revue Canadienne de Psychiatrie, 58, 8692.CrossRefGoogle ScholarPubMed
Voytovych, H., Krivanekova, L., & Ziemann, U. (2012). Lithium: A switch from LTD- to LTP-like plasticity in human cortex. Neuropharmacology, 63, 274279.CrossRefGoogle ScholarPubMed
Walker, E. F., Brennan, P. A., Esterberg, M., Brasfield, J., Pearce, B., & Compton, M. T. (2010). Longitudinal changes in cortisol secretion and conversion to psychosis in at-risk youth. Journal of Abnormal Psychology, 119, 401408.CrossRefGoogle ScholarPubMed
Walker, E. F., Sabuwalla, Z., & Huot, R. (2004). Pubertal neuromaturation, stress sensitivity, and psychopathology. Development and Psychopathology, 16, 807824.CrossRefGoogle ScholarPubMed
Walker, E. F., Trotman, H. D., Pearce, B. D., Addington, J., Cadenhead, K. S., Cornblatt, B. A., et al. (2013). Cortisol levels and risk for psychosis: Initial findings from the North American Prodrome Longitudinal Study. Biological Psychiatry, 74, 410417.CrossRefGoogle ScholarPubMed
Wamsley, E. J., Tucker, M. A., Shinn, A. K., Ono, K. E., McKinley, S. K., Ely, A. V., et al. (2012). Reduced sleep spindles and spindle coherence in schizophrenia: Mechanisms of impaired memory consolidation? Biological Psychiatry, 71, 154161.CrossRefGoogle ScholarPubMed
Wand, G. S., Oswald, L. M., McCaul, M. E., Wong, D. F., Johnson, E., Zhou, Y., et al. (2007). Association of amphetamine-induced striatal dopamine release and cortisol responses to psychological stress. Neuropsychopharmacology, 32, 23102320.CrossRefGoogle ScholarPubMed
Wang, D., & Fawcett, J. (2012). The perineuronal net and the control of CNS plasticity. Cell Tissue Research, 349, 147160.CrossRefGoogle ScholarPubMed
Ward, N. S., Brown, M. M., Thompson, A. J., & Frackowiak, R. S. (2003). Neural correlates of motor recovery after stroke: A longitudinal fMRI study. Brain, 126, 24762496.CrossRefGoogle ScholarPubMed
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660669.CrossRefGoogle ScholarPubMed
Welch, K. A., Moorhead, T. W., McIntosh, A. M., Owens, D. G. C., Johnstone, E. C., & Lawrie, S. M. (2013). Tensor-based morphometry of cannabis use on brain structure in individuals at elevated genetic risk of schizophrenia. Psychological Medicine, 43, 20872096.CrossRefGoogle ScholarPubMed
Whalley, H. C., Baig, B. J., Hall, J., Job, D. E., McIntosh, A. M., Cunningham-Owens, et al. (2010). Effects of the BDNF val66met polymorphism on prefrontal brain function in a population at high genetic risk of schizophrenia. American Journal of Medical Genetics, 153B, 14741482.Google Scholar
Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., McCarley, R. W., et al. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences, 106, 12791284.CrossRefGoogle ScholarPubMed
Whitford, T. J., Mathalon, D. H., Shenton, M. E., Roach, B. J., Bammer, R., Adcock, R. A., et al. (2011). Electrophysiological and diffusion tensor imaging evidence of delayed corollary discharges in patients with schizophrenia. Psychological Medicine, 41, 959–69.CrossRefGoogle ScholarPubMed
Woo, T. U. (2013). Neurobiology of schizophrenia onset. Current Topics in Behavioral Neurosciences. Advance online publication.CrossRefGoogle Scholar
Wykes, T., Huddy, V., Cellard, C., McGurk, S. R., & Czobor, P. (2011). A meta-analysis of cognitive remediation for schizophrenia: Methodology and effect sizes. American Journal of Psychiatry, 168, 472485.CrossRefGoogle ScholarPubMed
Wykes, T., Reeder, C., Williams, C., Corner, J., Rice, C., & Everitt, B. (2003). Are the effects of cognitive remediation therapy (CRT) durable? Results from an exploratory trial in schizophrenia. Schizophrenia Research, 61, 163174.CrossRefGoogle ScholarPubMed
Xerri, C., Merzenich, M. M., Peterson, B. E., & Jenkins, W. (1998). Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. Journal of Neurophysiology, 79, 21192148.CrossRefGoogle ScholarPubMed
Yasuda, S., Liang, M. H., Marinova, Z., Yahyavi, A., & Chuang, D. M. (2009). The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Molecular Psychiatry, 14, 5159.CrossRefGoogle ScholarPubMed
Zhang, W., & Linden, D. J. (2003). The other side of the engram: Experience-driven changes in neuronal intrinsic excitability. Nature Reviews Neuroscience, 4, 885900.CrossRefGoogle ScholarPubMed
Ziemann, U., Hallett, M., & Cohen, L. G. (1998). Mechanisms of deafferentation-induced plasticity in human motor cortex. Journal of Neuroscience, 18, 70007007.CrossRefGoogle ScholarPubMed