Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T01:22:59.281Z Has data issue: false hasContentIssue false

The developmental pathways to schizophrenia: Potential moderating effects of stress

Published online by Cambridge University Press:  04 March 2009

Elaine F. Walker*
Affiliation:
Emory University
Craig C. Neumann
Affiliation:
Mississippi State University
Kym Baum
Affiliation:
Emory University
Dana M. Davis
Affiliation:
Emory University
Donald Diforio
Affiliation:
Emory University
Andrea Bergman
Affiliation:
St. John's University
*
Elaine F. Walker, Dept. of Psychology, Emory Univ., Atlanta, GA 30322.

Abstract

The observations of family members as well as the results of past research suggest that a variety of developmental pathways can precede the onset of schizophrenia in early adulthood. In this article, we describe recent findings from our research on the childhood precursors of schizophrenia. Taken together, the results indicate that childhood behavioral, emotional, and motoric dysfunction occur at a higher rate in preschizophrenia subjects when compared to control subjects. Further, there are developmental changes as well as significant variability among schizophrenia patients in the nature and severity of childhood impairment. Drawing on the prevailing diathesis-stress model, we explore the moderating role that stress exposure and reactivity may play in the expression of the organic diathesis for schizophrenia. Specifically, we consider the role of the biological stress response in the production of developmental changes and individual differences in the pathways to schizophrenia. Given extant models of dopamine involvement in the neuropathology of schizophrenia, stress-induced Cortisol release may alter the expression of subcortical abnormalities in dopamine neurotransmission. Thus, we present a neural mechanism for the hypothesized behavioral sensitivity to stress exposure in schizophrenia, and explore the capacity of the model to account for the changing behavioral manifestations of vulnerability.

Type
Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. (1991). Child Behavior Checklist. Department of Psychiatry, University of Vermont, Burlington, VT.Google Scholar
Aleem, A., Kulkarni, A., & Yergani, V. K. (1988). Dexamethasone suppression test, schizophrenia, and movement disorder. Acta Psychiatrica Scandinavia, 78(6), 689694.CrossRefGoogle ScholarPubMed
Alexander, G. E., Crutcher, M. D., & DeLong, M. R. (1990). Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Progress in Brain Research, 85, 119145.CrossRefGoogle ScholarPubMed
Altamura, C., Guercetti, G., & Percudani, M. (1989). Dexamethasone suppression test in positive and negative schizophrenia. Psychiatry Research, 50(1), 6975.CrossRefGoogle Scholar
Aylward, E., Walker, E., & Bettes, B. (1984). Intelligence in schizophrenia: Meta-analysis of the research. Schizophrenia Bulletin, 10, 430459.CrossRefGoogle ScholarPubMed
Barnes, T. R. E., & Liddle, P. F. (Eds.), (1985). Tardive dyskinesia: implications for schizophrenia. London: Royal Society of Medicine Services Limited.Google Scholar
Baum, K. M., & Walker, E. F. (1995). Childhood behavioral patterns of adult symptom dimensions in schizophrenia. Schizophrenia Research, 16, 111120.CrossRefGoogle ScholarPubMed
Breier, A., & Buchanan, R. W. (1992). The effects of metabolic stress on plasma progesterone in healthy volunteers and schizophrenic patients. Life Sciences, 51, 15271534.CrossRefGoogle ScholarPubMed
Breier, A., Kirkpatrick, B., & Buchanan, R. W. (1993). Clozapine attenuates meta-chlorophenylpiperazine (mCPP)-induced plasma Cortisol increases in schizophrenia. Biological Psychiatry, 34(1), 492494.CrossRefGoogle ScholarPubMed
Brown, K. W., & White, T. (1992). Sub-syndromes of tardive dyskinesia and some clinical correlates. Psychological Medicine, 22(4), 923927.CrossRefGoogle ScholarPubMed
Buydens-Branchey, L., & Branche, M. H. (1992). Cortisol in alcoholics with a disordered aggression control. Psychoneuroimmunology, 17, 4554.Google ScholarPubMed
Cador, M., Cole, B. J., Koob, G. F., Stinus, L. (1993). Central administration of corticotropin releasing factor induces long-term sensitization to D-amphetamine. Brain Research, 606(2), 181186.CrossRefGoogle ScholarPubMed
Caligiuri, M. P., & Lohr, J. B. (1990). Fine force instability: A quantitative measure of neuroleptic-induced dyskinesia in the hand. Journal of Neuropsychiatry, 2(4), 395398.Google ScholarPubMed
Cannon, T. D., & Mednick, S. A. (1993). The schizophrenia high-risk project in Copenhagen: Three decades of Progress. Acta Psychiatrica Scandinavica, 370, 3347.CrossRefGoogle ScholarPubMed
Cannon, T. D., Mednick, S. A., & Parnas, J. (1990). Antecedents of predominantly negative- and predominantly positive-symptom schizophrenia in a high-risk population. Archives of General Psychiatry, 47, 622632.CrossRefGoogle ScholarPubMed
Carpenter, W. T., Heinrichs, D. W., Alphs, L. D. (1985). Treatment of negative symptoms. Schizophrenia Bulletin, 11, 440452.CrossRefGoogle ScholarPubMed
Carpenter, W. T., Heinrichs, D. W., & Wagman, A. M. I. (1988). Deficit and nondeficit forms of schizophrenia: the concept. American Journal of Psychiatry, 145, 578583.Google ScholarPubMed
Cicchetti, D. (1990). An historical perspective on the discipline of developmental psychopathology. In Rolf, J., Masten, A., Cicchetti, D., Nuechterlein, K., & Weintraub, S. (Eds.), Risk and Protective factors in the Development of Psychopathology (pp. 228). New York: Cambridge University Press.CrossRefGoogle Scholar
Copolov, D. L., Rubin, R. T., Stuart, G. W., Poland, R. E., Russell, E. et al. (1989). Specificity of the salivary Cortisol Dexamethasone Suppression Test across psychiatric diagnoses. Biological Psychiatry, 25(7), 879893.Google ScholarPubMed
Crow, T., Done, D., & Sacker, A. (1995). Birth Cohort study of the antecedents of schizophrenia. In Hafner, H. & Gattaz, W. F. (Eds.), Search for the Causes of Schizophrenia, Vol. III. Berlin: Springer-Verlag.Google Scholar
Dallman, M. F., Akana, S. F., Scribner, K. A., Bradbury, M. J., Walker, C. D., Strack, A. M., & Cascio, C. S. (1992). Stress, feedback and facilitation in the Hypothalamo-pituitary-adrenal axis. Journal of Neuroendocrinology, 4, 517526.CrossRefGoogle ScholarPubMed
Davis, K. L., Khan, R. S., Ko, G., & Davidson, M. (1991). Dopamine in schizophrenia: A review and reconceptualization. American Journal of Psychiatry, 148, 14741486.Google ScholarPubMed
Davis, M., & Emory, E. (1995). Sex differences in neonatal stress responsivity. Child Development, 66, 1427.CrossRefGoogle Scholar
Delisi, L. E., Dauphinais, I. D., & Gershon, E. S. (1988). Perinatal complications and reduced size of limbic structures in familial schizophrenia. Schizophrenia Bulletin, 14, 185191.CrossRefGoogle ScholarPubMed
Eisler, J. (1995). Maternal separation in neonatal rats: Effects on the sensitivity to cocaine and central corticotropin-releasing factor circuits. Unpublished doctoral dissertation. Emory Univ., Atlanta, GA.Google Scholar
Fish, B., Marcus, J., Hans, S. L., Auerbach, J. G., & Perdue, S. (1992). Infants at risk for schizophrenia: Sequelae of genetic neurointegrative defect. Archives of General Psychiatry, 49, 221235.CrossRefGoogle ScholarPubMed
Fishbein, D. H., Lozovsky, D., & Jaffe, J. H. (1989). Impulsivity, aggression, and neuroendocrine responses to serotonergic stimulation in substance abusers. Biological Psychiatry, 25(8), 10491066.CrossRefGoogle ScholarPubMed
Forman, S. D., Bissette, G., Yao, J., Nemeroff, C. B., van Kammen, D. P. (1994). Cerebrospinal fluid corticotropin-releasing factor increases following haloperidol withdrawal in chronic schizophrenia. Schizophrenia Research, 12(1), 4351.CrossRefGoogle ScholarPubMed
Foreman, D. M., & Goodyer, I. M. (1988). Salivary Cortisol hypersecretion in juvenile depression. Journal of Child Psychology & Psychiatry & Allied Disciplines, 29(3), 311320.CrossRefGoogle ScholarPubMed
Frankenhaeuser, M., Rauste-von Wright, M., Collins, A., von Wright, J., Sedvall, G., & Swahn, C. (1978). Sex differences in psychoneuroendocrine response to examination stress. Psychosomatic Medicine, 40, 334343.CrossRefGoogle Scholar
Gil-ad, I., Dickerman, Z., Amdursky, A., & Laron, Z. (1986). Diurnal rhythm of plasma beta endorphin, Cortisol and growth hormone in schizophrenia as compared to control subjects. Psychopharmacology, 88(4), 496499.CrossRefGoogle ScholarPubMed
Goodyer, I., Herbert, J., Moor, S., Altham, P. (1991). Cortisol hypersecretion in depressed school-aged children and adolescents. Psychiatry Research, 37(3), 237244.CrossRefGoogle ScholarPubMed
Gottesman, I. (1991). Schizophrenia Genesis. New York: W. H. Freeman.Google Scholar
Granger, D. A., Stansbury, K., Henker, B. (1994). Preschoolers' behavioral and neuroendocrine responses to social challenge. Merrill-Palmer Quarterly, 40(2), 190211.Google Scholar
Grimes, K., & Walker, E. (1994). Childhood emotional expressions, education attainment and age-at-onset of illness of schizophrenia. Journal of Abnormal Psychology, 103, 784790.CrossRefGoogle ScholarPubMed
Grossman, R. G. (1993). The relationship between hormonal mediators and systemic hypermetabolism after severe head injury. Journal of Trauma, 34(6), 806816.Google Scholar
Halbreich, U. et al. (1984). Effect of age and sex on Cortisol secretion in depressives and normals. Psychiatry Research, 13(3), 221229.CrossRefGoogle ScholarPubMed
Hans, S., & Marcus, J. (1991). Neurobehavioral development of infants at risk for schizophrenia. In Walker, E. F. (Ed.), Schizophrenia: A life-course developmental perspective. New York: Academic Press, 3553.Google Scholar
Henry, S. C., Guegant, G., Cador, M., Arnauld, E., Arsaut, J., LeMoal, M., & Demotes-Mainard, J. (1995). Prenatal stress in rats facilitates amphetamine-induced sensitization and induces long-lasting changes in dopamine receptors in the nucleus accumbens. Brain Research, 685, 179186.CrossRefGoogle ScholarPubMed
Hooks, M. S., Colvin, A., Juncos, J. L., & Justice, J. B. (1992). Individual differences in basal and cocaine stimulated dopamine levels in the nucleus accumbens. Brain Research, 587, 306312.CrossRefGoogle ScholarPubMed
Iqbal, N., Asnis, G. M., Wetzler, S., Kahn, R. S., Kay, S. R., & van Pragg, H. M. (1991). The mCPP challenge test in schizophrenia: hormonal and behavioral responses. Biological Psychiatry. 30(8), 770778.CrossRefGoogle ScholarPubMed
Jakob, H., & Beckmann, H. (1986). Prenatal development disturbances in the limbic allocortex in schizophrenics. Journal of Neural Transmission, 65, 303326.CrossRefGoogle ScholarPubMed
John, R. S., Mednick, S. A., & Schulsinger, F. (1982). Teacher reports as a predictor of schizophrenia and borderline schizophrenia: A Bayesian decision analysis. Journal of Abnormal Psychology, 91, 399413.CrossRefGoogle ScholarPubMed
Johnstone, E. C., Macmillian, J. F., Frith, C. D., Benn, D. K., & Crow, T. J. (1990). Further investigation of the predictors of outcome following first schizophrenia episodes. British Journal of Psychiatry, 157, 182189.CrossRefGoogle ScholarPubMed
Kalachinik, J. E., Young, R. C., & Offerman, O. (1984). A tardive dyskinesia evaluation and diagnosis form for applied facilities. Psychopharmacology Bulletin, 20, 303309.Google Scholar
Kaneko, M., Yokoyama, F., Hoshino, Y., Takahagu, K., Murata, S., Watanabe, M., & Kumashiro, H. (1992). Hypothalamic pituitary adrenal axis function in chronic schizophrenia: Association with clinical features. Neuropsychobiology, 25(1), 17.CrossRefGoogle ScholarPubMed
Kathol, R. G., Gehris, T. L., Carrol, B. T., Samuelson, S. D., Pitts, A. F., Meller, W. H., & Carter, J. L. (1992). Blunted AcTH response to hypoglycemic stress in depressed patients but not in patients with schizophrenia. Journal of Psychiatric Research, 26, 103116.CrossRefGoogle ScholarPubMed
Keshavan, M. S., Brar, J., Ganguli, R., & Jarrett, D. B. (1989). DST and schizophrenia symptomatology. Biological Psychiatry, 26(8), 856858.CrossRefGoogle Scholar
Kiess, W., Meidert, A., Dressendorfer, R. A., Scheiver, K., Kessler, U., & Konig, A. (1995). Salivary Cortisol levels throughout childhood and adolescence: relation with age, pubertal stage and weight. Pediatric Research, 37, 502506.CrossRefGoogle ScholarPubMed
Kirschbaum, C., Wust, S., & Hellhammer, D. (1992). Consistent sex differences in Cortisol response to psychological stress. Psychosomatic Medicines, 54, 648657.CrossRefGoogle ScholarPubMed
Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., Heninger, G. R., Bowers, M. B., & Charney, D. S. (1994). Subanesthetic effects of the Noncompetitive NMDA antagonist, ketamine, in humans. Archives of General Psychiatry, 51, 199214.CrossRefGoogle ScholarPubMed
Larsen, M. C., Gunnar, M., & Hertsgaard, L. (1991). The effects of morning naps, car trips, and maternal separation on adrenocortical activity in human infants. Child Development, 62, 362372.CrossRefGoogle Scholar
Lerer, B., Ran, A., Blacker, M., Silver, H. et al. (1988). Neuroendocrine responses in chronic schizophrenia: Evidence for serotonergic dysfunction. Schizophrenia Research, 1(6), 405410.CrossRefGoogle ScholarPubMed
Levine, S. (1993). Psychosocial factors in the regulation of the stress response during infancy. Biological Psychiatry (Abstract), 33, 3839.Google Scholar
Liddle, P. F. (1987). Schizophrenic syndromes, cognitive performance and neurological dysfunction. Psychological Medicine, 16, 4957.CrossRefGoogle Scholar
Lohr, J. B., & Caliguiri, M. P. (1992). Quantitative instrumental measurement of tardive dyskinesia: A review. Neuropsychopharmacology, 6(4), 231239.Google ScholarPubMed
Lucas, P. B., Pickar, D., Kelsoe, J., Rappaport, M. et al. (1990). Effects of acute administration of caffeine in patients with schizophrenia. Biological Psychiatry, 28(1), 3540.CrossRefGoogle ScholarPubMed
Malla, A. K., Norman, R. M., Williamson, P., Cortese, L., & Diaz, F. (1993). Three syndrome concept of schizophrenia: A factor of analytic study. Schizophrenia Research, 19, 143150.CrossRefGoogle Scholar
Mallik, N. B., Ghosh, K. K., & Chattopadhyay, P. K. (1986). Hormonal and psychological changes in adolescent boys. Journal of Psychological Researches, 30(3), 165169.Google Scholar
Manschreck, T. C. (1986). Motor abnormalities in schizophrenia. In Nasrallah, & Weinberger, D. R. (Eds.), Handbook of Schizophrenia: The Neurology of Schizophrenia, 1, 6596. New York: Elsevier.Google Scholar
Manschreck, T. C., Keuthen, N. J., Schneyer, M. L., Celada, M. T., Laughery, J., & Collins, P. (1990). Abnormal involuntary movements and chronic schizophrenia disorders. Biological Psychiatry, 27, 150158.CrossRefGoogle Scholar
McGauley, G. A., Aldridge, C. R., Fahy, T. A., & Eastment, C. (1989). The dexamethasone suppression test and negative symptoms of schizophrenia. Acta Psychiatrica Scandinavica, 80(6), 548553.CrossRefGoogle ScholarPubMed
McMurray, R. G., Newbould, E., Bouloux, G. M. et al. (1991). High-dose naloxone modifies cardiovascular and neuroendocrine function in ambulant subjects. Psychoneuroendocrinology, 16(5), 447455.CrossRefGoogle ScholarPubMed
McNeil, T. (1987). Perinatal influences in the development of schizophrenia. In Helmchen, H. & Henn, F. A. (Eds.), Biological Perspectives on Schizophrenia (pp. 125138). New York: Wiley.Google Scholar
Meaney, M. J., Viau, V., Bhatnagar, S., Betito, K., Iny, L. J., O'Donnell, D., & Mitchell, J. B. (1991). Cellular mechanism underlying the development and expression of individual differences in the hypothalamicpituitary-adrenal axis. Journal of Steroid Biochemistry and Molecular Biology, 39, 265274.CrossRefGoogle Scholar
Mednick, S., & Hollister, M. (Eds.). (1995). Neural development and schizophrenia. New York: Plenum.CrossRefGoogle Scholar
Moss, H. B., Yao, J., & Panzak, G. L. (1990). Serotonergic responsivity and behavioral dimensions in antisocial personality disorder with substance abuse. Biological Psychiatry, 28, 325338.CrossRefGoogle ScholarPubMed
Nagy, J., & Szatmari, P. (1986). A chart review of schizotypal personality disorders in children. Journal of Autism and Developmental Disorders, 16(3), 351367.CrossRefGoogle ScholarPubMed
Nerozzi, D., Magnani, A., Sforza, V., Scaramucci, E. et al. (1990). Prolactin and growth hormone responses to growth hormone-releasing hormone in acute schizophrenia. Neuropsychobiology, 23(1), 1517.CrossRefGoogle ScholarPubMed
Neumann, C. S., Grimes, K., Walker, E. F., & Baum, K. (1995). Developmental pathways to schizophrenia: Behavioral subtypes. Journal of Abnormal Psychology, 104, 558566.CrossRefGoogle ScholarPubMed
Neumann, C. S., & Walker, E. F. (1996). Childhood neuromotor soft signs, behavior problems and adult psychopathology. In T. H. Ollendick, & R. J. Prinz (Eds.), Advances in Clinical Child Psychology, 18, 173203.CrossRefGoogle Scholar
Newcomer, J. W., Faustman, W. O., Whiteford, H. A., Moses, J. A. et al. (1991). Symptomatology and cognitive impairment associate independently with postdexamethasone Cortisol concentrations in unmedicated schizophrenic patients. Biological Psychiatry, 29(9), 855864.CrossRefGoogle ScholarPubMed
Norman, R. M., & Malla, A. K. (1993). Stressful life events and schizophrenia. I: A review of the research. British Journal of Psychiatry, 162, 161166.CrossRefGoogle Scholar
Offord, D., & Cross, L. (1969). Behavioral antecedents of adult schizophrenia. Archives of General Psychiatry. 21, 267283.CrossRefGoogle ScholarPubMed
Parnas, J., Teasdale, T. W., & Schulsinger, H. (1985). Institutional rearing and diagnostic outcome in children of schizophrenic mothers. Archives of General Psychiatry, 42, 762769.CrossRefGoogle ScholarPubMed
Plocka, M., Matkowski, K., Lehmann, W., Kanarkowski, R., & Rybakowski, J. (1992). Dexamethasone suppression test in endogenous depression and schizophrenia in male and female patients. Psychiatria Polska, 26(5), 373380.Google ScholarPubMed
Plotsky, P. M., & Meaney, M. J. (1993). Early postnatal experience alters hypothalamic cortitropin releasing factor (CRF) mRNA, median eminence CRF content, and stress-induced release in adult rats. Molecular Brain Research, 18, 195200.CrossRefGoogle Scholar
Raine, A., Lenez, T., & Mednick, S. (Eds.). (1995). Schizotypal Personality. New York: Cambridge University Press.Google Scholar
Ramsey, D. S., & Lewis, M. (1995). The effects of birth condition on infants Cortisol response to stress. Pediatrics, 95, 546549.CrossRefGoogle Scholar
Raz, S., & Raz, N. (1990). Structural brain abnormalities in the major psychoses: A quantitative review of the evidence from computerized imaging. Psychological Bulletin, 108, 93108.CrossRefGoogle ScholarPubMed
Rothschild, A. J., Schatzberg, A. F., Langlais, P. J., Lerbinger, J. E. et al. (1987). Psychotic and nonpsychotic depressions: I. Comparison of plasma catecholamines and Cortisol measures. Psychiatry Research, 20(2), 143153.CrossRefGoogle ScholarPubMed
Rybakowski, J., Linka, M., Matkowski, K., & Kanarkowski, R. (1991a). Dexamethasone suppression test and the positive and negative symptoms of schizophrenia. Psychiatria Polska, 25(5), 915.Google ScholarPubMed
Rybakowski, J., & Linka, M. (1991b). Effect of neuroleptic treatment on positive and negative symptoms of schizophrenia and the results of the dexamethasone test. Psychiatria Polska, 25(1), 16.Google ScholarPubMed
Sandyk, R., & Kay, S. R. (1990). The relationship of negative schizophrenia to parkinsonism. International Journal of Neuroscience, 55, 159.CrossRefGoogle ScholarPubMed
Sapolsky, R. (1992). Stress, the aging brain, and the mechanisms of neuron death. Cambridge: MIT Press.Google Scholar
Sapolsky, R., Krey, L., & McEwen, B. (1985). Prolonged glucocorticoid exposure reduces hippocampal neural number: Implications for aging. Journal of Neuroscience, 5, 12211224.CrossRefGoogle Scholar
Schaeffer, M., & Baum, A. (1984). Adrenal cortical response to stress at Three Mile Island. Psychosomatic Medicine, 46, 227237.CrossRefGoogle ScholarPubMed
Schatzberg, A. F., Rothschild, A. J., Langlais, P. J., Lerbinger, J. E. et al. (1987). Psychotic and nonpsychotic depressions: II. Platelet MAO activity, plasma catecholamines, Cortisol, and specific symptoms. Psychiatry Research, 20(2), 155164.CrossRefGoogle ScholarPubMed
Schatzberg, A. F., & Rothschild, A. J. (1988). The roles of glucocorticoid and dopaminergic systems in delusional (psychotic) depression. Annals of the New York Academy of Sciences, 537, 462471.CrossRefGoogle ScholarPubMed
Schilling, J. C., Adamus, W. S., & Pulluk, R. (1992). Neuroendocrine and side effect profile of pramipexole, a new dopamine receptor agonist, in humans. Clinical Pharmacology & Therapeutics, 51(5), 541548.CrossRefGoogle ScholarPubMed
Scott, S. M., & Watterberg, K. L. (1995). Effects of gestational age, postnatal age, and illness on plasma Cortisol concentrations in premature infants. Pediatric Research, 37, 112116.CrossRefGoogle ScholarPubMed
Seiver, L. J., Kalus, O. F., Keefe, R. S. E. (1993). The boundaries of schizophrenia. Psychiatric Clinics of North America, 16(2), 2124.Google Scholar
Selye, H. (1976). Stress in Health and Disease. Boston: Butterworth.Google Scholar
Sharma, R. P., Pandey, G. N., Janicak, P. G., Peterson, J. et al. (1988). The effect of diagnosis and age on the DST: A meta-analytic approach. Biological Psychiatry, 24(5), 555568.CrossRefGoogle Scholar
Spangler, G., & Grossmann, K. E. (1993). Biobehavioral organization in securely and insecurely attached infants. Child Development, 64, 14391450.Google ScholarPubMed
Stoff, D. M., Pasatiempo, A. P., Yeung, J., & Cooper, T. B. (1992). Neuroendocrine response to challenge with dl-fenfluramine and aggression in disruptive behavior disorders of children and adolescents. Psychiatry Research, 43, 263276.CrossRefGoogle ScholarPubMed
Suomi, S. (1993). Genetic and early environmental influences on biobehavioral responses to stress in rhesus monkeys. Biological Psychiatry, (Abstract), 33, 38.Google Scholar
Swaab, D. F., Raadsheer, F. C., Ender, E., Hofman, M. A., Kamphorst, W., & Ravid, R. (1994). Increased cortisol levels in aging and Alzheimer's disease in postmortem cerebral spinal fluid. Journal of Neuroendocrinology, 6, 681687.CrossRefGoogle Scholar
Tandon, R., Mazzara, C., DeQuardo, J., Craig, K. A. et al. (1991). Dexamethasone suppression test in schizophrenia: Relationship to symptomatology, ventricular enlargement, and outcome. Biological Psychiatry, 29(10), 953964.CrossRefGoogle ScholarPubMed
Tienari, P., Lahti, I., Sorri, A., Naarala, M., Moring, J., Wahlberg, K., & Wynne, L. (1987). The Finnish adoptive family study of schizophrenia. Journal of Psychiatric Research, 21, 437445.CrossRefGoogle ScholarPubMed
Torrey, E. F., Bowler, A. E., Taylor, E. H., & Gottesman, I. I. (1994). Schizophrenia and Manic-Depressive Disorder. New York: Basic Books.Google Scholar
Uno, H., Eisele, S., Sakai, A., Shelton, S., Baker, E., DeJesus, O., & Hoden, J. (1994). Neurotoxicity of glucocorticoids in the primate brain. Hormones and Behavior, 28, 336348.CrossRefGoogle ScholarPubMed
Van-Cauter, E., Linkowski, P., Kerkofs, M., Hubain, P. et al. (1991). Circadian and sleep-related endocrine rhythms in schizophrenia. Archives of General Psychiatry, 48(4), 348356.CrossRefGoogle ScholarPubMed
Vrtunski, P. B., Alphs, L. D., & Meltzer, H. Y. (1991). Isometric force control in schizophrenic patients with tardive dyskinesia. Psychiatry Research, 37, 5772.CrossRefGoogle ScholarPubMed
Waddington, J. L., Buckley, P. F. (Eds.). (1995). Neurodevelopmental models of schizophrenia: The role of central nervous system maturation in the expression of neuropathology. The Neurodevelopmental Basis of Schizophrenia. New York: R. G. Landes.Google Scholar
Waddington, J. L., O'Callaghan, E., Larkin, C., & Kinsella, A. (1993). Cognitive dysfunction in schizophrenia: Organic vulnerability factor or state marker for tardive dyskinesia? Special Issue: Tardive dyskinesia and cognitive dysfunction. Brain and Cognition, 25(1), 5670.CrossRefGoogle Scholar
Walker, E. (Ed.) (1991). Schizophrenia: A life-course developmental perspective. New York: Academic Press.Google Scholar
Walker, E. (1994). The developmentally moderated expression of the neuropathology underlying schizophrenia: Schizophrenia Bulletin, 20, 453480.CrossRefGoogle ScholarPubMed
Walker, E. F., Cudeck, R., Mednick, S. A., & Schulsinger, F. (1981). The effect of parental absence and institutionalization on the development of clinical symptoms in high-risk children. Acta Psychiatrica Scandinavica, 63, 95109.CrossRefGoogle ScholarPubMed
Walker, E., Davis, D., & Gottlieb, L. (1991). Charting the developmental trajectories leading to psychopathology. In Cicchetti, D. & Toth, S. (Eds.), Developmental Psychopathology. Vol. 3, Models and Integrations (pp. 185205). Rochester, NY: Rochester University Press.Google Scholar
Walker, E., Downey, G., & Bergman, A. (1989). The effects of parental psychopathology and maltreatment on child behavior: A test of the diathesis stress model. Child Development, 60, 1524.CrossRefGoogle ScholarPubMed
Walker, E., Grimes, K., Davis, D., & Smith, A. (1993). Childhood precursors of schizophrenia: Facial expressions of emotion. American Journal of Psychiatry, 150, 16541660.Google ScholarPubMed
Walker, E., & Lewine, R. J. (1990). Prediction of adultonset schizophrenia from childhood home-movies of the patients. American Journal of Psychiatry, 147, 10521056.Google ScholarPubMed
Walker, E., Lewine, R. J. (1993). The impact of sampling bias on findings of gender differences in schizophrenia. Schizophrenia Bulletin, 19, 17.CrossRefGoogle Scholar
Walker, E., Lewine, R., & Newmann, C. (in press). The relation between childhood behavioral characteristics and adult brain morphology in schizophrenia. Schizophrenia Research.Google Scholar
Walker, E. F., & Neumann, C. S. (1995). Neurodevelopmental models of schizophrenia: The role of central nervous system maturation in the expression of neuropathology. In Waddington, J. L. & Buckley, P. F. (Eds.), The Neurodevelopmental Basis of Schizophrenia. New York: R. G. Landes.Google Scholar
Walker, E., Savoie, T., & Davis, D. (1994). Neuromotor precursors of schizophrenia. Schizophrenia Bulletin, 20, 441–151.CrossRefGoogle ScholarPubMed
Walker, E., & Vega, E.Dopamine receptor subtypes in schizophrenia: A meta-analysis of the research. Unpublished manuscript.Google Scholar
Walker, E., Weinstein, J., Baum, K., & Neumann, C. (1995). Antecedents of schizophrenia: Moderating influences of age and biological sex. In Hafner, H. & Gattaz, W. (Eds.), Search for the Causes of Schizophrenia. New York: Springer-Verlag.Google Scholar
Watt, N. F. (1978). Patterns of childhood social development in adult schizophrenics. Archives of General Psychiatry, 35, 160165.CrossRefGoogle ScholarPubMed
Watt, N. F., & Lubensky, A. W. (1976). Childhood roots of schizophrenia. Journal of Consulting and Clinical Psychology, 44, 363375.CrossRefGoogle ScholarPubMed
Webb, C. T., & Levinson, D. F. (1993). Schizotypal and paranoid personality disorder in the relatives of patients with schizophrenia and affective disorders. Schizophrenia Research, 11, 8192.CrossRefGoogle ScholarPubMed
Weiner, H. (1992). Perturbing the organism: The Biology of Stressful Experience. Chicago: University of Chicago Press.Google Scholar
Whalley, L. J., Christie, J. E., Blackwood, D. H. R. et al. (1989). Disturbed endocrine function in the psychoses. I. Disordered homeostasis of disease process? British Journal of Psychiatry, 155, 455461.CrossRefGoogle ScholarPubMed
Windle, M. (1994). Temperamental inhibition and activation: Hormonal and psychosocial correlates and psychiatric disorders. Personality and Individual Differences, 17, 6170.CrossRefGoogle Scholar
Wolkowitz, O. M. (1994). Prospective controlled studies of the behavioral and biological effects of exogenous corticosteroids. Review. Psychoneuroendocrinology, 19(3), 233255.CrossRefGoogle Scholar
Yarden, P. E., & Discipio, W. J. (1971). Abnormal movements and prognosis in schizophrenia. American Journal of Psychiatry, 128, 317323.CrossRefGoogle ScholarPubMed