We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc.manuscriptcentral.com/designscience.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The ‘open approach’ is rooted in the open-source and free-software movements. Its application has spread to more fields than computer engineering. Product design is impacted as well: we observe new stakeholders and practices challenging current structured design processes and leading to industrial successes. Open-design appears to be promising yet disruptive. Moreover, its distinctive features remain unclear.
This paper aims to popularize this new concept, as well as to give both researchers and practitioners an overview of current research on open-design, and its consequences on design. For this, we conducted a systematic quantitative bibliometric analysis of 624 entries corresponding to the keyword ‘open-design’ in the Scopus database. This supports a qualitative synthesis of scientific literature, enabling us to summarize practices falling under the umbrella term ‘open-design’. As such, this paper traces the evolution of product design and the open approach. It also analyzes the impact of open-design on the design process as presented in the scientific literature. Finally, this paper develops a typology of open-design of tangible artifacts that distinguishes among three currently reported varieties of practice: do-it-yourself, meta-design, and industrial ecosystems. As the major contribution of this paper, this typology is developed as a final discussion.
Hackathons are short-term events at which participants work in small groups to ideate, develop and present a solution to a problem. Despite their popularity, and significant relevance to design research, they have only recently come into research focus. This study presents a review of the existing literature on the characteristics of designing at hackathons. Hackathon participants are found to follow typical divergence–convergence patterns in their design process throughout the hackathon. Unique features include the initial effort to form teams and the significant emphasis on preparing and delivering a solution demo at the final pitch. Therefore, hackathons present themselves as a unique setting in which design is conducted and learned, and by extension, can be studied. Overall, the review provides a foundation to inform future research on design at hackathons. Methodological limitations of current studies on hackathons are discussed and the feasibility of more systematic studies of design in these types of settings is assessed. Further, we explore how the unique nature of the hackathon format and the diverse profiles of hackathon participants with regards to subject matter knowledge, design expertise and prior hackathon experience may affect design cognition and behaviour at each stage of the design process in distinctive ways.
Recent years have seen the rise of citizens as contributors to hardware product creation. This trend has increased attention to open source hardware (OSH): a phenomenon that extends the intellectual property management and development practices in open source software (OSS) into the design of physical objects. OSH projects are different from OSS projects due to product type, and distinct from traditional closed source new product development (NPD) ones due to their openness. These differences challenge the degree of applicability of existing project success definitions in the OSH context. To investigate project success in OSH, we conducted a qualitative survey with practitioners. We report characteristics of successful OSH projects through three identified themes: (a) value creation – the big-picture impact, (b) quality of output – the quality of the hardware and accompanying documentation and (c) project process – activities that contribute to success. We contextualise by comparing OSH with selected literature on the success of OSS and NPD project management. While our study confirms a similarity between OSS and OSH in defining project success, it also highlights themes that are uniquely important to the latter. These findings are helpful for OSH development practice and could provide lessons for OSS development and closed source NPD.
The importance of intangible code modularity in open-source software, as well as of tangible product modularity in proprietary hardware, is widely acknowledged. Nevertheless, modularity in open-source hardware (OSH) remains under-researched. This article first describes qualitatively different types of modularity based on two OSH case studies and then quantifies each type of modularity, following a unified network-based approach. The results are discussed and compared within each case to test the ‘mirroring hypothesis’, and between cases to evaluate the impact of physical against intangible modularity types. The ultimate goal is to prompt a discussion into a wide but under-explored subset in OSH.
Having upended the traditional software development, which historically was centred exclusively on proprietary, copyright-protected code, open-source has now entered the physical artefact world. In doing so, it has started to change not only how physical products are designed and developed, but also the commercialisation process. In recent years, authors have witnessed entrepreneurs intentionally choosing not to patent their product design and technologies but instead licencing the designs and technologies under open-source licences. The entrepreneurs share their product designs online with their community – people who congregated due to the shared interests in products’ technology or project’s social objectives. Founding a startup firm without excluding others from using their own invention is not a common practice. Therefore, there is reason to ask if this choice a strategic decision or irrational action due to short-sightedness or extreme altruism? Conducting interviews with 65 founders, we grounded a framework explaining that the driver of going open is a result of both intrinsic and extrinsic factors. In addition, we observed the change of identities over time among the entrepreneurs. We hope to use this paper as a pilot study of this emerging socio-technological phenomenon, which is understudied relative to the proprietary product commercialisation process.
Open Source Hardware (OSH) is an increasingly viable approach to intellectual property management extending the principles of Open Source Software (OSS) to the domain of physical products. These principles support the development of products in transparent processes allowing the participation of any interested person. While increasing numbers of products have been released as OSH, little is known on the prevalence of participative development practices in this emerging field. It remains unclear to which extent the transparent and participatory processes known from software reached hardware product development. To fill this gap, this paper applies repository mining techniques to investigate the transparency and workload distribution of 105 OSH product development projects. The results highlight a certain heterogeneity of practices filling a continuum between public and private development settings. They reveal different organizational patterns with different levels of centralization and distribution. Nonetheless, they clearly indicate the expansion of the open source development model from software into the realms of physical products and provide the first large-scale empirical evidence of this recent evolution. Therewith, this article gives body to an emerging phenomenon and contributes to give it a place in the scientific debate. It delivers categories to delineate practices, techniques to investigate them in further detail as well as a large dataset of exemplary OSH projects. The discussion of first results signposts avenues for a stream of research aiming at understanding stakeholder interactions at work in new product innovation practices in order to enable institutions and industry in providing appropriate responses.
‘Openness’ is one of the key concepts brought forward by postindustrial narratives questioning the modern repartition of roles between industries and customers. In these narratives, citizen participation in design and intellectual property management based on open source principles are the promise of more sustainable production models. In this context, openness in product design and development has been the object of growing interest and experimentation from academia, businesses and grassroots communities. As a result, numerous concepts emerged that attempt to grasp the essence of this phenomenon, unfortunately leading to overlapping, conflicting or speculative depictions. In this article, we share the understanding we gained throughout 6 years of research on Open Design and Open Source Hardware and attempt to make the difference between myths and facts. We depict an enthusiastic but realistic picture of Open Design and Open Source Hardware practices as we could observe them and deliver a structured framework to situate concepts and their differences. From this, we share seven observations leading to seven corresponding research questions and establish a research agenda to stimulate further investigations into this socially relevant and potentially ground-breaking phenomenon.
Knowledge management (KM) is the process of creating, sharing, using and managing the knowledge and information of an organization. In this paper, we investigate KM practices and needs in Open Source Hardware (OSH) communities. The aim is to provide insights into the KM issues and challenges facing these communities. Our analysis is based on interviews carried out with the participants of 22 projects. Interview transcriptions were coded and tagged with concepts extracted from the literature. Text mining was used to uncover the main concepts embedded in the corpus. From this analysis, knowledge sharing emerged as one of the top-rated concepts. Codification and personalization also proved to be important KM approaches, both requiring support in the OSH design process. Using a dendrogram, we highlighted the benefits and challenges of codification together with some interesting concept associations. High contributor turnover, little or no standardization and weak project structuring are still key challenges for OSH communities when it comes to ensuring awareness, making decisions and sharing knowledge.