Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T04:46:48.879Z Has data issue: false hasContentIssue false

Twisted gamma filtration of a linear algebraic group

Published online by Cambridge University Press:  25 July 2012

Kirill Zainoulline*
Affiliation:
Department of Mathematics and Statistics, University of Ottawa, 585 King Edward, Ottawa, ON K1N6N5, Canada (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the present paper we introduce and study the twisted γ-filtration on K0(Gs), where Gs is a split simple linear algebraic group over a field k of characteristic prime to the order of the center of Gs. We apply this filtration to construct nontrivial torsion elements in γ-rings of twisted flag varieties.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2012

References

[Bou05]Bourbaki, N., Lie groups and Lie algebras, in Elements of Mathematics (Springer, Berlin, 2005), chs 7–9.Google Scholar
[CPZ10]Calmès, B., Petrov, V. and Zainoulline, K., Invariants, torsion indices and oriented cohomology of complete flags, Preprint (2010), arXiv:0905.1341.Google Scholar
[Dem74]Demazure, M., Désingularisation des variétés de Schubert généralisées, Ann. Sci. Éc. Norm. Supér. 7 (1974), 5388.CrossRefGoogle Scholar
[GZ10]Garibaldi, S. and Zainoulline, K., The γ-filtration and the Rost invariant, Preprint (2010), arXiv.org 1007.3482.Google Scholar
[GZ12]Gille, S. and Zainoulline, K., Equivariant pretheories and invariants of torsors, Transform. Groups 17 (2012), 471498.CrossRefGoogle Scholar
[SGA6]Grothendieck, A., Exposé 0, in Théorie des intersections et théorème de Riemann–Roch (SGA6), Lecture Notes in Mathematics, vol. 225 (Springer, 1971).Google Scholar
[Ful98]Fulton, W., Intersection theory, second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Springer, Berlin, 1998).CrossRefGoogle Scholar
[Kar98]Karpenko, N., Codimension 2 cycles on Severi–Brauer varieties, K-Theory J. 13 (1998), 305330.CrossRefGoogle Scholar
[KMRT98]Knus, M.-A., Merkurjev, A., Rost, M. and Tignol, J.-P., The book of involutions, American Mathematical Society Colloquium Publications, 44 (American Mathematical Society, Providence, RI, 1998).CrossRefGoogle Scholar
[Mer05]Merkurjev, A., Equivariant K-theory, in Handbook of K-theory, vols. 1, 2 (Springer, Berlin, 2005), 925954.CrossRefGoogle Scholar
[Pan94]Panin, I., On the algebraic K-theory of twisted flag varieties, K-Theory J. 8 (1994), 541585.CrossRefGoogle Scholar
[Ste75]Steinberg, R., On a theorem of Pittie, Topology 14 (1975), 173177.CrossRefGoogle Scholar
[Tit71]Tits, J., Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196220.Google Scholar